AD-A144 125 COMPREMENSIVE OCCUPATIOMAL DATA ANALYSIS PROGRANS 80 1"e
(CODAPBO) USER’S MANUAL{U) NAVY OCCUPATIONAL
. DEVELOPMENT ANO ANALYSIS CENTER WASHMINGION DC VAN 84
UNCLASSIFIED DOD/DF -84/008A F/G 9/2 NL

B .

g S R g

.“u A WY

o sy 2
L

mu_';'_

m |25 T

iE

Mm

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 ~ A

Bl as e banshmas s s e

ataaer

o

PR T ITeT PUNPE IR SRS SR A

GZL vylv-av

;9272-]3! " -
REPORT DOCUMENTATION [1. REFORT O :,g 3. Reciplent’s Accession No.
8 PAGE DOD/DE- 84/006a N -Gol
4. Title and Subtitie S Report Dete
COMPREHENSIVE QCCUPATIONAL DATA ANALYSIS PROGRAMS 80 (CODAPS0) JANUARY 1984
ser’s Manua Yy
7. Authorts) B 8. Performing Orgenization Rept. No.
N/A
9. Performing Organization Name and Address 10. Project/Tesk/Werk Unit No.
NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC)
BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA) 11, Comtract(C) or GranttG) Mo,
WASHINGTON, DC 20374 © N/A
@ N/A
12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered
NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC) FINAL RELEASE 83.1
BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA)
WASHINGTON, DC 20374 .

15. Suppiementary Notes

SOURCE CODE FOR CODAP80 PROGRAMS.
for magnetic tape see

16. Abstract (Limit: 200 words)

~— X, CODAP80 is an enhanced IBM version of the Comprehensive Occupational Data
Analysis Programs. The software system is used to process occupational information
and includes programs that range from data entry to statistical analysis. CODAPS80
is based on a database management concept which allows the job analyst more versatility
in analysis than its predecessor. Included with the system are four manuals: the
CODAP80 User's Manual, Job Analysis Manual, Systems Manual, and Executive Summary.

Z}z.l
17. O Anelysis o. O .
0 re
b. identifiers/Open-Ended Terms
¢. COBATI Field/Group
18. Avsilebiity Statemen: 15, Seourity Closs (This Repert) 21. Ne. of Pages
UNCLASSIFIED 192
RELEASE UNLIMITED 25, Security Class (This Page) 2. Price
UNCLASSIFIED
(o ANS-I0.18) Soe Instrustions on Reverse OPTIONAL PORM 272 (4-77)
(Pormerty NTIS-38)
\ Department of Commerce
)
- e ot

D

-

B

REPORT DOCUMENTATION |1 Mow Wo.
PAGE DOD/DE- 84/006a

5. Reaipient’s Assossion MNe.

‘glh(-Gol
4. Title and Subtitle

COUPRE?ENSIVE YCCUPATIONAL DATA ANALYSIS PROGRAMS 80 (CODAP80)
L ser's Manua

L] Dete
JANUARY 1984

[

i 7. Author(s)
' N/A

& Performing Organisetion Reptl. Ne.

9. Performing Organization Name and Adiress
NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC)

BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA)
WASHINGTON, DC 20374

38. Prajost/Tesk/Werk Unit Ne.

11. ContractiC) or Orani(@) Ne.
© N/A
@ N/A

12. Sponsering Orgenization Neome and Adwvess

| NAVY OCCUPATIONAL DEVELOPMENT AND ANALYSIS CENTER (NODAC)
BUILDING 150, WASHINGTON NAVY YARD (ANACOSTIA)

i WASHINGTON, DC 20374

15. Type of Repert & Peried Covered
FINAL RELEASE 83.1

.

18. Suppiementary Notes

SOURCE CODE FOR CODAP80 PROGRAMS.
for magnetic tape see

16, Abstrect (Limit: 200 words)

~ .. CODAP80 is an enhanced IBM version of the Comprehensive Occupational Data
Analysis Programs. The software system is used to process occupational information
and includes programs that range from data entry to statistical analysis. CODAP8S0O
is based on a database management concept which allows the job analyst more versatility
in analysis than its predecessor. Included with the system are four manuals: the
CODAP80 User's Manual, Job Analysis Manual, Systems Manual, and Executive Summary.

PR
K}a.(

17. Do A is a. D

b. (dentifiers/Open-Ended Yerms

¢. COSAT! Field/Greup

18. Availability Statemen: 20, Sesurily Class (This Reperd) 21. Ne. o Puges
UNCLASSIFIED 192
RELEASE UNLIMITED 5. Sesurity Olsss (This Page) 22, Price
UNCLASSIFIED
(Soe ANSH-Z99.18) So0 instruations en Ruverse OPTIONAL POINS T72 (4-TD)

(Formerly
v Oopartment of Commercs
)

S) o
Ry ey "f‘;‘i'i-,"”, ,';fl".‘"é'ifb.k‘:‘""“ cevrin ety ~&AM‘?‘?‘ b g e P mnie oy iy
S el R A -y T T AT

~ 4

N

FOREWORD

The Comprehensive Occupational Data Analysis Programs (CODAP), a soft-
ware package developed by the United States Air Force, is in use by all the
United States military services and numerous other agencies throughout the
world. Of the two predominant versions of CODAP, the 1BM version has not
kept pace with the continuing development of the UNIVAC version.

In 1978 the Navy Occupational Development and Analysis Center, a
detachment of the Naval Military Personnel Command, and serving as Executive
Agent for Joint Task Analysis Support for the Department of Defense, initi-
ated a project to develop an enhanced IBM version of CODAP which would be
less machine dependent than the existing IBM version, easy for non-program-
mers to learn and use, and which would provide the capability to implement
new analysis approaches for analyzing occupational data. The funding for
this project was provided by the United States Navy, Marine Corps, and Coast
Guard.

As a result of this project, CODAP80, an enhanced version of IBM CODAP,
was developed by Texas AsM University. This manusl is one of four CODAP80
manuals which were developed to accompany the CODAP80 system. The four
manuals are the CODAP80 Executive Summary, the Job Analysis Manual, the
User's Manuel, and the Systems Manual.

TABLE OF CONTENTS

Page
GENERAL INFORMATION .« « « « o o o o o o s o o o o o o mnneee 1
DATABASE CREATION + o o o o o ¢ o o o o s o s o o o o s neese 2

INPSTD and OGROUP File Initialization« ¢, 3
INPSTD o o . L] . . . L L . . * . L] » . . L . » L] L] . L] 7
OGROUP L] . » L] L] . * L] L] L] . . - L . . L] - 18
REARNG and INTERPRETER File Initmlization c s e s e a e e 22
REARNG . L L] . L) . L[] . . L L] L] . L] L4 L] . . 25
THE CODAPS0 INTERPRETER . . ¢ « + o » s o o s o o o o o s ¢« o o o« 27

Principles of the CODAP80 Language
Execution JCL for the CODAP80 Interpreter
CODAP80 Reserved Words . . . « . .
The Sample Database .
i ADDATA
i Syntax Graph .

. AVALUE . «. « « « &

Syntax Graph .
BEGIN . + « . + . &
Syntax Graph .
CLUSTER L] L] L] . .
Syntax Graph
COPY [] L] L * . .
Syntax Graph
CORR
Syntax Graph
CREATE
Syntax Graph
DESCRIBE
Syntax Graph .

END ¢« ¢« ¢« ¢ v v v o

hﬁ—’

' Syntax Graph .
INPUT ¢ ¢« ¢« ¢ ¢ & &

Syntax Graph .

PRINT . ¢« o v &« . &

Syntax Graph .

RANDOM.

Syntax Graph .

RELY L] L » L] L L[] L]

Syntax Graph .

REPORT L] L) L] .' L] .

Syntax Graph .

SELECT .+ ¢ o ¢ ¢ »

Syntax Graph .

STANDARD.

(Syntax Graph .
VARSUM Ll L4 L] * * L]

Syntax Graph .

B 8 e & o o 6 ¢ e ¢ @ & o & 4 o & » * e & o o @

@ ® ©® 2 e e 9 5 & 6 6 e T e s s O 8 e e * 8 6 % O o B s s s o e s &
® % & & e s 2 4 s e s s O s s e T L s W S 0 e s e o s s s e s s s
© & & o o 5 8 0 & % & + % 8 e e s e 8 6 ® 6 8 2 ® % & s o s & ®w e e &
® & % 4 & ® e O s 2 * 6 " e e ® T 6 2 8 O e & & v & 5 8 6 st o v e
¢ ® © s o & & o s e e s s ¢ e s e s s s P B e a0 6 o e s s 8 s s s b
® 8 8 6 e & ¢ s * s e 4 % 9 8 8 & ° & 8 * B T T 8 e & 8 v e s 0 v
® & ® 4 0 & ¢ 8 ® 6 6 o+ o 0 e+ S e s e 8 e 4 s 0 2 P & s % e s e
® e & » e 5 T & 4 0 0 8 e e 4 & 6 8 B & ® ® s e P S 8 ® O ¢ % & e e v
® ¢ @ ¢ 8 o+ 4 s e & e st e 4 " s T 8 " % 8 e e ® S e e & w S e * a0
-o.....‘-C.l..ccoolao-co...c....O....
® e % s e ¢ 4 4 s e s 5 s s s e 8 ° 8 8 ° P G e B O &t G e % B . e s e a ®
® 8 & 4 e 2 B e & s s e + & s e & & 2 s T e s o e O & P s e 8 s v 8 e o o o
-oo.uoo.u-oc-..caoooo-.o-.ao..ooooo-ao
® 6 & e e ° 4 & 4 8 e o * T & e 0 S o 8 e e 8 s e * 2 e e s " & o ¢ s e s .
® © o o & ¢ & & @ & o e * 2 e P » * 0 s % 0 & & ° ® o % 6 & & 8 " e e o s @
® 6 & 4 * 5 e ¥ ® 8 s e ¥ s E 6 6 2 B 4+ S S . s T & 2 s 0 4 " s 0 e s . 9 @
@ & o e & © 4 & 4 2 p & 4 s e e e+ s 8 & s a4 " s e s s s s % e s e s v e @
® & ® s e e ° s e s s e s s s s s % e B S B e s e s s % s st s s s e e e s
® @ v ¢ ¢ o e ¥ e o s o * 2 e & 8 B o 8 " * 4 8 s P s e B o 6 a8 e s v s @
® ¢ e o 6 s S, * ¢ e s " ST 0 O 6 & B e * S % O e 8 s 8 e s % B B e s P s .
w0
-

€ o & o ¢ o & e 2 8 6 ¢ & ¢ o & & 6 & » 6 6 » o v e @

B
S e Man s Serg

o~ , - T e i A AN ANt B . P K g A i o e - M e e e

~

PR . it L et .
“‘"" LI i 'm};\, A R U N LY "{z‘l’uyﬂn g iy . gt L,
' A T L o R R - '

e

i _4
o é'
. NN
'

BN

pro—

CODAPS80
GENERAL INTRODUCTION

CODAPS80 is a software system for processing occupational -information.
The system includes programs for basic data entry and statistical analysis.
CODAPS0 was designed with the particular needs of the job analyst in mind.
As such, much of the system's terminology is oriented toward them. Users of
CODAPS0 will find, though, that the general data handling and analysis
features of the system will allow any database to be processed that can be
conceptualized in the form of a two-dimensional matrix.

ORGANIZATION OF
THE USER'S MANUAL

--—--»The User's Manual consists of two major sections: a section detailing
the creation of a CODAPS80 database and a section {llustrating the use of the
CODAPS80 interpreter to process and display the information residing on the
database. The database creation section of the manual will focus on the
routines required to generate the database (INPSTD, OGROUP and REARNG), dis-
cuss file initialization and space requirements, detail the database crea-
tion routines' control specifications and provide a sample set of data in
which to illustrate the process of constructing a CODAP80 database. The

interpreter section of the user's manual will explain the use of the CODAPS80 .

language in processing an occupational database. The function and charac-
teristics of each of the interpreter procedures will be outlined, with exam-
ples provided to facilitate understanding.

CODAPS80 RELEASE

The specifications appearing in this manual apply to release 83.1 of
the CODAP80 occupational analysia computer system.

EXAMPLE JCL
SETUPS

The example Job Control Language setups that appear in the manual con-
form to those found in Brown (1877). They should be compatible with the JCL
specifications of any IBM OS operating system.

[VPRV

CODAPS80
DATABASE CREATION

INTRODUCTION

Database creation consists of three steps: two of which are mandatory
and one that is optional. The three steps are (in order):

1) INPSTD (Input Standard)
2) OGROUP (Overlap Group)
3) REARNG (Rearrange)

INPSTD

The INPSTD datdbase creation routine builds the initial incumbent data-
base. Raw time spent ratings are relativized to a 100 point scale and his-
tory, task and secondary remarks are processed and saved. INPSTD is a
mandatory step in database creation.

OGROUP

The OGROUP database creation routine performs a hierarchical clustering
of incymbents measured on their time spent on tasks. [t is the main clus-
tering routine in the CODAPS0 system. OGROUP is an optional step in data-
base creation.

. REARNG

The REARNG database creation routine prepares the initial database for
use by the CODAP80 interpreter. REARNG is a mandatory step in database
creation.

SAMPLE DATA

A sample set of data (consisting of seven incumbents measured on four
history, five task and five secondary variables) is provided to illustrate
the steps in database creation. The amount of information contained in the
sample set of data is small enough to allow the user to trace, by hand, the
computations associated with the different steps involved in the creation of
a CODAP80 database.

PILE INITIALIZATION

Before the INPSTD and OGROUP database creation routines can be run, it
is necessary to initislize the file space required for their execution. A
simple FORTRAN program (named INITIALl) is provided to accomplish this.
After INPSTD and OGROUP have been executed, another FORTRAN program
(named INITIAL2) is provided to initialize the file space required to
execute the REARNG database creation routine and the CODAPS80 interpreter.

J—

INPSTD AND OGROUP
FILE INITIALIZATION

INTRODUCTION .

- There are six files that must be initialized before the INPSTD and
OGROUP database creation routines may be run. These six files are:

1) INPFILE

2) VARCOM

3) SYMTABI1

4) GRPFILE

§) GRPHSN

6) DECODE

Initialization of these six files is accomplished by the INITIAL1 pro-

gram. INITIALl serves to create the necessary files, and provide them with
enough space to allow INPSTD and OGROUP to execute properly.

INITIAL1

Each of the above files requires a space allccation. How much space
depends on the file. The amount of space required is determined by the
number of records that are written to the file. The number of records that
are written is a function of the amount of the various kinds of information
being input. The number of records a file should have initialized is calcu-
lated using the following equations. The number of records per track quoted
assumes IBM 3350 compatible disk drives. The basic reference used is Brown
1977).

INPFILE
Records = NINC * CEIL((NHIST + NTASK + NSEC + 2)/900)
5 Records per Track
VARCOM
Records = (NHIST + NTASK + NSEC) +
(Potential # of Created Rows or Columns)
45 Records per Track
SYMTABI1

Records = Always set at 31

M e TP T e N e e s et s e 4 s C e e et e s S

PU—

e .
e LA et L LeeEa e v R ;i"u, e L. i P - —J}—,y......,_.\a—wh
T . e Ce r PR k w
. Ch A !
. e
- J [B et T

N

* INITIAL1
GRPFILE
- NINC -~ 2 NINC - 2 NINC - 1
Records = 5 + FLOOR 310 + FLOOR 3340 + FLOOR-———-540

1 Record per Track

GRPHSN

Records = CEIL(NINC/10)

86 Records per Track
DECODE

Records = 1 + # Different Ranges + CEIL(# Different Ranges/100)

140 Records per Track

In the above equations the different parameters are interpreted in the
following way:

FLOOR: Largest integer <= Argument.
Example: FLOOR(6.1) = 6 FLOOR(9) =9

CEIL: Smallest integer >= Argument.
Example: CEIL(6.1) =7 CEIL(9) =9

NINC: Number of incumbents in the study.
NHIST: Number of history variables.
NTASK: Number of task variables.

NSEC: Number of secondary variables.

The DECODE file equation is concerned with the "# Different Ranges."
For example, the following decode titles have 7 different ranges:

H15 1=YES; 2=NO;
H16 1=LO; 2=MED; 3=HI;
H10-H20 1=HOT; 2=COLD;

INITIALL
EXECUTION SETUP

On the following pages is the JCL setup and FORTRAN source code for
executing the INITIAL1 routine. The procedure referenced on the "// EXEC"
card (FG) is the procedure library name for the FORTRAN G1 compile, load and
go procedure. The setup for FG can be found in Appendix C.

.

B

. N
A e

~

INITIAL1
JCL SETUP FOR INITIAL1 FORTRAN PROGRAM

/,"" % ## #* t 2 g * 1 222]
//l * . . *
/7% INITIAL1 JCL SETUP, »
//* SAMPLEDATABO DATA, _ L
/7% »
1/ * bbbl bbbt DLl *as

// _EXEC FG,REGION=256K

//FTO2F001 DD DSNe{NPF | LE,Dd SP=(NEW,CATLG) JUNITsSYSDA,
/ OCBe (DSORG=DA) , SPACE=(3600,(7))
//FT10FO01 DO DSNeVARCOM,D | SP=(NEW,CATLG) ,UNI TeSYSDA,
// OCB=(DSORG=0A) , SPACE= (244, (50))
//FT12F001 DD DSNeSYMTAB1,D15Pw {NEW,CATLG) »UNETaSYSDA,
A OCB=(DSORG=DA) , SPACE=(52,(31))
//FT15F001 00 DSNeGRPF | LE,D 1 SP=(NEW,CATLG) ,UNI T=SYSDA,
/7 DCB=(DSORG=DA) , SPACE=(12969, {5))
//FT16F001 DO DSNeGRPHSN,D|SP=(NEW,CATLG) »UNITSYSDA,
// DCB=(DSORG=DA) ,SPACE=(40, (1))

//FT17F001 0O DSN=DECODE ,D 1 SP= (NEW,CATLG) ,UNI T=SYSDA,
// DCB=(DSORG=DA) ,SPACE=(12C,(7))

//SOURCE DD *

#RANR INITIALY FORTRAN SOURCE STATEMENTS #se##
//SYSIN Do *

INITIALL

ot ¥ SRS TR

v

PSS

INITIAL1L

INITIAL1

PROGRAM TO INTIALIZE THE OGROUP AND INPSTD FILES

[e X2 X)

[eXsXo]

INITIALT FORTRAN PROGRAM,
PROGRAM TO INITIALIZE THE FILES NECESSARY TO

EXECUTE THE INPSTD AND

ROUTINES, == SAMPLEDATAS0 DATA,

OGROUP DATABASE CREATION

P2O0O00O0

REAL INPFIL(S00) ,
+ GRPHSN(10),
DEFINE FILE 2 (

VARCOM(61), SYTMTBI(13), GRPFIL(3240),
DECODE(30)
7, 900,U, IREC)

DEFINE FILE 10 ¢ 350, 61,U,IREC)
DEFINE FILE 12 ¢ 31, 13,0,I1REC)

DFFINE FILE 15 (
DEFINE FILE 16 ¢
DEFINE FILE 17 (

3, 3240,U,REC)
1, 10,U,IREC)
7, 30,U,IREC)

onon

WRITE INITIALIZATION RECOROS TO' INPFILE (FTO2)

D0 20 J=1,7
DO 10 X=1,900

10 INPFIL(K)=J
1REC=J

20 WRITE (2'IREC) INPFIL

OO0

WRITE INITIALIZATION RECORDS TO VARCOM (FT10)

DO 40 J=1,50

00 30 K=1,561
30 VARCOM(K)=J

IREC=J

40 WRITE (10' IREC) VARCOM

OO0

- WRITE INITIALIZATION RECORDS TO SYMTAB! (FT12)

00 60 J=1,31
00 50 Ks1,13
50 S;:TBI(K)-J

IREC=y
60 WRITE (12! IREC) SYMTB1

[eXyX+]

WRITE INITIALIZATION RECORDS TO GRPFILE (FT15)

00 80 J=1,5
00 70 k=1,3240

70 GRPFIL(K)=J
IRECsy

30 WRITE (13 IREC) GRPFIL

WRITE INITIALIZATION RECORDS TO GRPHSN (FT16)

SO0

00 100 J=i,1
DO 90 K=1,10

90 GRPHSN(K)=J
IREC=y

’. 100 WRITE (16'IREC) GRPMSN

¢
c

WRITE INITIALIZATION RECORDS TO DECOOE (FT17)

D0 120 i=1,7
00 110 K=1,30

110 DECODE(K) =)
IRECay

120 WRITE (177 IREC) DECODE
sTOP

END

. ’ INPSTD
INTRODUCTION

INPSTD is the first step in the creation of a CODAP80 database. This
step is characterized by the assignment of a database or study identifica-
tion designation, variable (history, task and secondary) remark and decode
title specifications and, in card image form, raw incumbent data. INPSTD
consists of five sections:

1) Database Parameter Specification
‘ 2) Format Fields Specification
3) Variable Remark Specification
; 4) Decode Title Specification
' .) 5) Incumbent Data ‘

DATABASE PARAMETER
SPECIFICATION

The database parameter specification provides the INPSTD routine with
|] information pertaining to the size of the study to be processed. The data-
| base parameter specifications are made on a single card requesting the fol-
' lowing information:

CARD .
| COLUMNS
| 1-12 Database (or Study ID). The ID must be left jus-
| tified, may only begin with a letter or underscore,
T contain no imbedded blanks and must consist of no
characters other than A-Z, 0-9 and the underscore.
The ID may be from 1 to 12 characters long.
13-17 Number of incumbents to be stored on the database
| ' (maximum of 20,000).
]
18-20 Number of data cards for each incumbent (maximum
») Of 455).
21-24 Number of history (H) or background variables.
]
25-28 Number of task (T) variables.
, ' 29-32 Number of secondary (S) variables.

33-33 Incumbent data print indicatof.‘ If blank, incum-
bent data will not be printed. Any character other
than a blank will cause data to be printed.

{ 35-35 Put a "1" to suppress default relativization of

task data.

NY

e €
et e

————

IR AT S 0 7

%

- - .'1 . - R '_pvm

1)

INPSTD

36-36 Put a "I" to suppress default error check of
non-filled data. If the user has placed a "1" in
column 36, data will be interpreted as follows:

Assume that age of incumbent is specified on the
format field as a two digit response (H.). An age
designation of 2% (the number 2 followed by a
blank) will be interpreted as 20. If column 36 is
left blank, data designations that are not right
justified will stop processing with an error.

37-37 Put a "1" to suppress printing of error messages
caused by non-filled data (only valid if column 36
is a "1").

The maximum number of incumbents that INPSTD can process is 20,000.
The maximum number of history, task and secondary variables is 5,000. These
5,000 variables may be comprised of any combination of history, task or
secondary responses.

It is not required that three types of variable responses occur in the
data of an occupational investigation. An investigation may entirely
consist of history responses only, or for that matter, may entirely consist
of task or secondary responses. There will be a difference, though, in the
way INPSTD interprets the various types of responses. Task responses will
be relativized to a 0-100 point scale, while history and secondary responses
will be stored in exactly the form in which they were input. In addition, a
blank field input as a task response wili be interpreted as a zero, while
blank fields input as history or secondary responses will be interpreted by
the system as being missing values.

FORMAT FIELDS
SPECIFICATION

Format fields consist of H, T and S designations respectively associ-
ated with the data type response made by the incumbent. An H field designa-
tion indicates that the associated data response from the incumbent repre-
sents a history variable. A T field designation represents a task response
and a S field designation represents a secondary response. If a data field
consists of more than one digit, the length of the field is expressed by
cortinuing the H, T or S designation with periods (.). For example, assume
an incumbent's responses consisted of the following:

CARD COLUMNS DATA TYPE

Incumbent ID 1-2 History
Age 3-4 History
Sex 5-5 History
Task 1 6-8 Task
Task 2 7-7 Task
Task 3 8-8 Task

8

> N

INPSTD

The format field that would designate such data would look like this:
=== Column 1

H.H.HTTT

The maximum length of a data field is seven digits. The maximum number

of format field specification cards is 455 (this would allow the specifica-
tion of up to 5,000 seven digit fields). Format field specifications may
not be continued across card image boundaries. The format fields specifica-
tion cards are followed by a card containing an '@@' delimiter in columns
1‘2.

VARIABLE REMARK
SPECIFICATION

A variable remark specification is a user supplied description or defi-
nition explaining the purpose or function of an associated data item. Vari-
able remarks are stored by INPSTD for later reference by the CODAPS80 inter-
preter.

For every H, T or S fileld denoted in the format fields specification,
there must be an associated variable remark specification. For instance, if
five task flelds were indicated in the format fields specification, then
five task variable remark specifications must be present.

The form of a variable remark is:

1) Variable type indication (H, T or S).

2) Digit (an integer number appended to the varible type
indication). ‘

3) Assignment operator (the symbol '='),

4) Variable remark (user supplied text describing the
associated variable).

5) Variable remarks are terminated by a semicolon (the
symbol ';').

Variable remark specifications are made to the INPSTD database creation
routine by placing the variable type indication in column 1, the digit
identifying the history, task or secondary response in columns 2-5
(left-justified), the assignment operator in column 6 and the variable
remark in columns 7-66. For example, assume the eighth task in an inventory
read: .

ESTABL ISH STANOARDS OF TERMINOLOGY AND DOCUMENTATION
{N WRITING FORTRAN COMPUTER PROGRAMS,

The user, though, desires that the eighth task be printed-out by the
CODAPS80 interpreter as:

ESTABLISH STANDARDS OF TERMINOLOGY AND DOCUMENTATION IN
WRITING FORTRAN COMPUTER PROGRAMS,

‘
<M

INPSTD

To achieve this output format, the eighth task would need to be for-
matted at INPSTD time in the following way:

== CARD COLUMNS

1 2 .3 4 5 6 7 8
> 1234567890123456789012345678901234567890 1234567890 123456789012345678901234567890

T8 =ESTABLISH STANDARDS OF TERMINOLOGY AND DOCUMENTATION IN
WRITING FORTRAN COMPUTER PROGRAMS,;

Variable remarks may consist of up to 240 characters. ‘Immediately fol-
lowing the assignment operator (in column 6) is the first of the allowed 240
characters. INPSTD scans each character between columns 7-67 in search of a
semi-colon. If no semi-colon is found, INPSTD skips to the next card and
continues scanning columns 7-67 until it finds one. iIf, after having
scanned columns 7-67 for four cards, a semi-colon has still not been found,
INPSTD will signal an error that the variable remark is more than 240 char-
acters long (columns 7-66 equal 60 characters -- four of these would equal
240 characters). Blanks in columns 7-66 are considered valid characters.
The following example remark would be interpreted by INPSTD as having 240
characters:

== CARD COLUMNS

1 2 3 4 5 6 7 8
==> 12343678901234567890123456789012345678901234567890123456789012345678901234 567890

TR T Iy BaR0"

beinieiotainleieleiniotel 240 CHARACTER VARIABLE Ensansease
oioioiuiulebeieieieiole ~ REMARK IRrR——

»BBE. prpapey HB B8
»

Variable remark specifications must be input in the following order:

All history variable remarks.
All task variable remarks.
All secondary variable remarks.

The fact that variable remark specifications must occur in a specific
order does not mean that the incumbent data must be in this order also.
Incumbent data may be organized in any fashion the user desires. The
numeric digits appended to the variable type indicator (H, T or S) must be
in ascending sequence from 1 to n with no ommissions. Semicolons are used
by INPSTD to delimit the end of a remark. They should not be used in the
text of a remark. The variable remark specifications are followed by a card
containing an '9@' delimiter in columns 1-2.

DECODE TITLE
SPECIFICATION

Decode title specifications are useful for enhancing the readability of
reports by decoding abstract number classifications into understandable
English. Many variables are coded '0xyes' and 'l=no' or are responded to
with an even greater range of classifications. Decoding the value response
classifications of a variable at INPSTD time will, in the case of the
CODAP80 VARSUM procedure, make for a more interpretable report.

10

. INPSTD

: The form of a decode title specification is as follows:

VARIABLE ID
OR DECODE VALUE = DECODE TITLE;

VARIABLE RANGE

A variable ID is the letter H, T or S followed by 1-4 digits. A vari-
able range is two variable IDs with a dash in between them. There may be
only 0-~5 blanks on each side of the dash. The two variable IDs must be the
same type (have the same beginning letter) and the numeric portion of the
first variable ID must be less than that of the second variable ID. For
example, H10 - HB8 is an invalid variable range. The decode title begins
with the character immediately after the ' and ends with the character
immediately preceding the ';'. Decode titles can be from 1-32 characters.
If another decode title is to be specified for the same variable ID or vari-
able range, it may be done by following the semicolon with:

DECODE VALUE = DECODE TITLE;

As many of these as needed may be specified for a particular variable.
For example, the following is valid:

H5~H10 1=THE TITLE FOR DECODE VALUE 1;
2=THE TITLE FOR DECODE VALUE 2;
7=THE TITLE FOR DECODE VALUE 7;

Notice that each successive decode value must be greater than the
previous one for the same variable. Variable IDs must be in ascending order
and decode values must be in ascending order within variable IDs or variable
ranges. The above example indicates that whenever one of the variables HS5,
H6, H7, H8, H9, or H10 has a value of 1, the associated meaning of that
value is the decode title (in this case, it is 'THE TITLE FOR DECODE
VALUE 1'). The same holds true for decode values 2 and 7.

The variable decode specifications are followed by a card containing an
‘9@’ delimiter in columns 1-2. -

CONTROL

The four INPSTD sections discussed above make-~up the control portion of
the routine. A sample set of incumbent information has been prepared to
guide the user through this manual. The information consists of seven
incumbents, each measured on four history, five task and five secondary
indicies. Using this sample information, the control setup of the INPSTD
routine would be as shown on the following page.

-—
T S S
nf——

11 !

A e i : —_

uﬁM‘ll‘-"_’; -

INPSTD

CONTROL
SETUP
== CARD COLUMNS

1 2 3 4 S 6 7 8
-=> 12345678901234567890123456789012345678901234567890123456789012345678901234567890

SAMPLEDATAS00000700 1000400050005 Y

HH K, HTSTSTSTSTS
o
W1 =SEX;
H2 =AGE;

H3 -VEARS ON JG,

H4 = NCUMBENT |

71 =SUBDUE VlOLENT INMATES ;
T2 =SHAKE OOWN INMATES;

T3 =SHAKE DOWN VISITORS;

S1 =SECONDARY = SL@UE VIOLENT INMATES;
S$2 =SECONDARY = SHAKE DOWN |NMATES;

S3 =SECONDARY = SHAKE DOWN vusn’o&s;

S4 =SECONDARY = ESCORT |NMATES;

S§5 =SECONDARY = TESTIFY IN COURT;

H1 1sMALE; 2eFEMALE;
S$1=53 '-DO, 2-ASSIST 3=SUPERVISE;
"

INCUMBENT
DATA

Each incumbent's data may consist of up to 455 cards. All 80 charac-
ters of a card may contain data. The maximum length of a data fleld is
seven charscters. The maximum number of variable responses from an incum-
bent is 5,000. The maximum number of incumbents is 20,000. Data fields may
not span across cards. All data from an incumbent must be numeric, If
potential task information was indicated on the database parameter specifi-
cation card and an incumbent has no nonzero task information, then that
incumbent is not included in the database.

DATA

The fifth INPSTD section discussed above constitutes the data portion
of the routine. Using the sample information, the data portion of INPSTD
would be as follows:

© == CARD COLUMNS

2 3 S 6 8
-3 l234567890l234567090 !234567890!234567890!234967890123456789012345678901234567890

219 17 111220
14119212420 2221
1 1630 33430 0
127 344 41310 63
123 251 1122810
13330642710 0 0 .
2 1170 0 223231

12

T O (b (L S UL A S S S, -%vu-:m B T .
E N X . PR AR e e

INPSTD

s
il

| INPSTD
EXECUTION SETUP

The JCL setup necessary to execute the INPSTD database creation routine
may be found on the following page. Printed output generated from INPSTD is
displayed also. !

«
-
[~
e e ” P O

. ' ‘ INPSTD

INPSTD

EXECUTION JCL FOR INPSTD DATABASE CREATION ROUTINE

[£ R AT 0 T B S I 3 3 3 0 0

/7% XL SETUP TO EXECUTE THE INPSTD DATABASE CREATION *
//* ROUTINE, INPSTD 1S STORED AS A MEMBER IN PDS LOAD *
//* MODULE CODAPSO, cow
/ /amunmmﬂmmimmnmunumo
// EXEC PQMe|NPSTD,REGIONwS12K

//STEPLIB DD DSNeCODAPSO,01SPeSHR

//FTO2F001 DD OSNe|NPF | LE,DISP=OLD

//FTO3F00) DD DSNsCONTROL ,D1SPeOLD

//FTOAF001 DD OSNOATA,D1SP=OLD-

//FTOGF001 DD SYSOUT=A

//FTI0F001 DO DSNeVARCOM,DiSP=0LD

//FT12F001 00 OSN=SYMTAB!,DtSP=OLD

//FT17F001 0O DSNeDECODE ,D!SP=OLD

//FT29F001 0D OSN=&4TEMP1S,UN) TeSYSOA,D | SP=(NEW,DELETE) ,
17 DCB=(RECFMeF , LRECL=48,BLKS IZE=48),

2 SPACE=(48, (5000, 1))

CONTENTS OF DSN=CONTROL
SAMPLEDATA800000700 1000400050005 Y

HH H MTSTSTSTSTS
[]

H1 «SEX;

H2 =AGE;

H3 ~YEARS ON JOB;
H& wINCUMBENT 1D;

T1 =SUBDUE VIOLENT INMATES;

T2 =SHAKE DOWN |NMATES;

TS wSHAKE DOWN VISITORS;

T4 =ESCORT INMATES;

TS «TESTIFY IN COURT;

St «SECONDARY =~ SUBDUE VIOLENT INMATES;
S2 wSECONDARY = SHAKE DOWN |NMATES;

S3 sSECONDARY = SHAKE DOWN VISITORS;

S4 =SECONDARY = ESCORT INMATES;

S5 =SECONDARY = TESTIFY |N COURT;

H1 1s=MALE; 2=FEMALE;
2;—55 1=D0Q; 2=ASSIST; 3SUPERVISE;

CONTENTS OF DSN=DATA

219 117°1111220
14119212420 2221
1 1630 33430 0
127 344 41310 63
123 251 1122510
15330642710 0 0
2 1170 0 225231

14 X

e e

INPSTD

PRINTED OUTPUT

INPSTD

1H100 NI A411S3L - ANVONOD3S = < S
S3IVWNI 1¥DOS3 - AUVINODSS - L4 S
SHOLISIA NROQ DIVHS - ANVONOAS = £ S
SILVWNI NAOD DIWHS - ANVONOJES - 4 S
SILWINI INTIOIA FNOBNS - ANVONCOIS =) -
INTIN0D YIS 3dAL
FIVIWVA FIAVIWA TiavivvA
SRV AVIMVA 3dAL-S
LUN0O NI AJIAS3L = < 1
SIIVMNG 140053 - L4 1
SWOLISIA NUOQ DIWS = € 1
SILVWNG NMOO 3¥WS . T 1
SILWING INTIOIA 3N0ENS =) 1
ANIHHOD WIGN 3dAL
FIVIWVA TIEVIWA FIBVIWA
SRIVNIY JIGVINVA 3dAL-L
Ol INIGNIONT = 14 H
G0F NO SYV3A = £ H
oV = 4 "
x3% -] H
ININ0O YIEN 3dAL
FIGVIAVA TIGVIUVA EVIYVA

SRMNIY FNGVINVA 3JAL-H

SISISISISIHH M 1
I

s ¢ v L 0UVLVITIANVS

068L95¥SZ1068LICTLTI068LIS LT .enoncnvnu-senonvns. 820“3282.3:582.3:“-
L] t 9 [L4 € T !

NO14VOt 13345 1VWRIOS FIGVIUVA

——

RV A
B

15

INPSTD

(continued)

INPSTD
PRINTED OUTPUT

<

z

v

14

14

4

14

] L 9 11 4
VAVQ AINFEWNONI
3ISIA3INS < °c
1SISSY X s
oa ‘1 s
Il INTVA YIS
300030 300030 AMEVINVA

$301L 300030 3dAL-S

3IWad °z]

I o | “1
JUIL INIVA YIINN
300030 300030 3T8VINVA

ONION3

SINUIL 300030 3dAL-H

= SNSVL OY3Z-NON 40 UIEWON "
1€262Z 0 OLI8 Z<~— |

= SNSVL ON3IZ-NON 40 ¥IBWNN
0 0 OLLZYI0TECi <~ |

= SYSVL OGYIZ-NON J0 HIGWN
016ZZIL 16T S28<-— 1§

= SNSVL OYIZ-NON 40 HIGWWN
£9 OlEly ¥ L21<— |

= SNSVL OYIZ-NON J0 HIEHN
= SHSVL OYIZ-NON JO UIGHN
1222 0TYZIT6YLIPI<~—— |

= SNSVL OYIZ-NON JO HIBWN
0zZZItL) LI 612<——

068L959£Z1068L9SPETI068L9SYETI Mochomvnu-oaohonvnﬂ— 068L9IC¥ETI1069LISVEZI068LISYEZE
1 4

-
L JUE: 14 1)
t9 ANIENINY
e ANIENAONI
iy ANIDNONI
't e ANISHNONY
LR 4 ANINONI
L} JLEL: 1e)

g
gg nnn
16

i --

Y

ST N
LS a7 ”

Ly
. E.
O ¢ M

] INPSTD

PRINTED OUTPUT

(continued)

L d

-—)

S e

wmme |[NPSTD SUMMARY e=ee

STUDY 10 = SAMPLEDATASQ
NUMBER OF |NCUMBENTS SPECIFIED - 7
NUMBER OF DATA CARDS PER INCUMBENT = 1
NUMBER OF HISTORY ROW VARIABLES - 4
NUMBER OF TASK ROW VAR1ABLES = 5
MUMBER OF SECONDARY ROW VARIABLES = s
NUMBER OF DECODE TITLE RECORDS - 7
MMBER OF TASK & SECONDARY RESPONSES = 43
NUMBER OF DELETED INC-DATA RECORDS = 0
NUMBER OF INCUMBENTS IN THE STUDY = 7

#RR® RUN WAS SUCCESSFuL ame

17

INPSTD

o -_w:,",rkuf,'\",',_?,\“») . .QQ A

OGROUP

INTRODUCTION

OGROUP is the main clustering routine in the CODAP80 computer system.
The routine performs a hierarchical clustering (based on Ward, 1963) of
incumbents measured on tasks. OGROUP is an optional step in database
creation. If clustering is desired, then OGROUP should be run immediately
after INPSTD and before REARNG. OGROUP consists of two sections: ‘ 1

1) Parameter Specification
2) Title Specification

. PARAMETER
Q SPECIFICATION

The parameter specifications for the OGROUP routine are made on a
single card requesting the following information:

CARD
COLUMNS
1-12 Study ID.
14-14 Overlap equation number (see Appendix B for formulae).
1=Absolute overlap
2=Distance
3=Distance squared
4=Binary
22-22 Overlap matrix print indication.
=Print overlap matrix.
24-24 Cluster indication.
Y=Do clustering
N=Clustering has been performed }
26-26 Membership report indication.
Y=Print a group membership report
27-27 Diagram report indication.
Y=Print a diagram report
32-36 Minimum group membership for diagram. *5

!
18 ,

OGROUP

TITLE
SPECIFICATION

The title specification is made on the card immediately following the
parameter specifications.

CARD o ')
COLUMNS

1-72 Report title.

OGROUP
INPUT SRETUP

The parameter and title spécifications for clustering the incumbents
associated with the sample data are displayed below. The user has opted to
use absolute overlap as the similarity formula, has indicated that cluster-
ing is to be performed, a group membership report is to be made and a dia-
gram report is to be generated with a minimum starter group membership of

== CARD COLUMNS

1 2 - 3 4 3 6 7 8
-=> 1234567890123436789012345678901234567890123456789012345678901234 567890 1234567890

SAMPLEDATABO 1 Y Yy 2 .
CLUSTER(ING (NCUMBENTS == SAMPLE DATABASE == Nm7 == TASKSs$S

OGROUP RESOURCE
CONSIDERATIONS

There is, theoretically, no limit to the number of incumbents that may
be clustered with OGROUP. The user should keep in mind, though, that the
time it takes to run OGROUP is a function of the number of tasks multiplied
by the square of the number of incumbents.

OGROUP
EXECUTION SETUP
The setup necessary to execute the OGROUP database creation routine may

be found on the following page. Output generated from OGROUPS's execution
is displayed also.

19

_ i s ey, TR e R SR A
et s oy g ey
) R o :) -

&

OGROUP

OGROUP
EXECUTION JCL FOR OGROUP DATABASE CREATION ROUTINE

/ /BSR4

//% JCL SETUP TO EXECUTE THE OGROUP DATABASE CREATION *
//* ROUTINE, OGROUP IS STORED AS A MEMBER IN PDS LOAD *
//* MODULE CODAP80, *
[/S S I 0 00000 0000 0000030000 0 .
// EXEC PGM=OGROUP,REG!ON=S 12K

//STEPLIB 0D DSN=CODAP80,D1SP=SHR

//FTO2F0Q1 DD OSN={NPFILE,DI1SP=OLD

//FTOSFO01 DD DDNAME=SYSIN

//FTO6F001 DO SYSOUT=A

//FT12F001 DO DSN=SYMTAB1,D|SP=OLD

//FT15F001 DD DSNeGRPFILE,D1SP=OLD

//FT16F001 DD DSNsGRPHSN,D | SP=OLD

//FT21FQ01 DD DSN=LATEMP21,UN|TaSYSDA,D1SP=(NEW,DELETE),

4 OCB= (RECFMsF , LRECL= 12960, 8LKS | ZE= 12960) ,
// SPACE= (12960, (4000,1))
//SYSIN oo *

SAMPLEDATAB0 1 Y vy 2 '
CLUSTERING INCUMBENTS =~ SAMPLE DATABASE == Ne7 o= TASKS=S

SCRATCH FILE
CALCULATION

Temporary scratch file FT21F001 in the above JCL setup will request
4000 records, each 12960 bytes long. This would sllow up to 3350 incumbents
to be clustered, each measured on up to 1000 tasks (the file would need 3926
records). This amount of scratch space is not always necessary. To calcu-
late the amount of space needed, use the following equation:

Records = 12 + FLOOR(NINC/1620) + FLOOR((NINC-1)/1568)

+ FLOOR((NINC~2)/1080) + FLOOR((NINC~2)/810)

+ FLOOR((NINC*NTASK)/1620) + FLOOR((NINC-1)/540)
+ (1 + FLOOR((NINC-1)/56))**2

- (FLOOR((NINC-1)/56) * (1 + FLOOR((NINC-1)/56)))/2

In the above equation the different parameters are interpreted in the
following way:

FLOOR: Largest integer <= Argument.
Example: FLOOR(2.1) =2 FLOOR(3) =3

NINC: Number of incumbents in the study.
NTASK: Number of task variables.

If the number of records in FT21F001 needs to be increased or decreased,
check with your CODAPS0 installation representative.

20

t——

OGROUP

PRINTED OUTPUT

OGROUP

ssne NS JO ON3 sawe

S-¥
[2 4

1/
4

‘cC

nn

‘8¢

[}

9

Ly

‘ot

oL

-

4

S=SNSYL ~= L=N -- ISVEVIVO ITMVS -- SINIGHNINI ONI¥ILSNTD

14 = JHHSUIGWIN JNOUD WNWININ
L 14 S 14 14 € 1 14 € [} 69ZV°Cy 8cefee
0 0 0 ! 1 9 1 4 € 11 Z 6LZL LY 696T°ZY
€ 14 | 4 S 0 0 0] I 1€96°0S LWLV LY
0 0 0 | 9 < 14 14 14 4 0661 °¢C ZLOE*1S
0 0 0] ’ 0 0 0 1 14 1299°9¢ L298°9¢
0 0 0 i L 0 0 0 \ 1 0000°0L 0000 °0L
oL WOY4 39VLIS SYeW INIOI oL WOYJ 3JOVLS SueW IN3OI NIHLIM N33AL36
IONIND3S IV WN IWNIND3IS v N JOVH3AV
SJINOYD ONINIENOD A9 0IR0J

L | L '
L v v z

€ | < i

9 v € z.

< v b4 z

€ 4 4 $

OL WOud SwIeM IN3al
3ImIN0O3s ‘ON JNOW

C=SISVL — £=N ~- ISVBVIVQ IIdWVS —- SINITHNONI ONIUILSNTD =

z

A A

068L9¢¥E2Z10
4 SNO1 140 ON/STU

<

OBVAVOIIMVS =

9

¢

14

€

T

]

V1S

FLIL LU0

= WVHOVIO W3 HNHSUBGIN JNOD WINININ

WEN NOILWOI NTBAO

al Aons

21

TR T e A

»

INITIAL2

CARDFILE

The CARDFILE is a card image sequential file. INITIAL2 will initialize
it with one record. It is used by the CODAP80 interpreter procedure COPY.
To determine the number of records that will be written to CARDFILE the user
is referred to the -discussion of the COPY procedure.

In the equations on the previous page the different parametérs are
interpreted in the following way:

CEIL: Smallest integer >= Argument.
Example: CEIL(6.1) =7 CEIL{(9) =

NINC: Number of incumbents in the study.
" NHIST: Number of history variables.
NTASK: Number of task variables.

NSEC: Number of secondary variables.

INITIAL2
EXECUTION SETUP

On the following page is the JCL setup and FORTRAN source code for
executing the INITIALZ2 routine. The procedure referenced on the "// EXEC"
card (FG) is the procedure library name for the FORTRAN G1 compile, load and
go procedure. The setup for FG can be found in Appendix C.

23

. -

‘\\

'“‘IY(A

REARNG AND INTERPRETER
FILE INITIALIZATION

INTRODUCTION

Following the execution of INPSTD and OGROUP, four files must be
initialized before the REARNG database creation routine and the CODAPS80
interpreter may be run. These four files are:

1) DATABASE
. 2) CREATED

3) SYMTAB2

4) CARDFILE

Initialization of these four files is accomplished by the INITIAL2
program.

INITIAL2

Each of the above files requires a space allocation. The amount of
space to be allocated is a function of the number of records that need to be
written to the file. The number of records needed is calculated from the
following equations. The number of records per track quoted assumes IBM
3350 compatible disk drives. The basic reference is Brown (1977).

DATABASE

CEIL((NHIST * NINC)/1000)

2 * CEIL((# of Task & Secondary Responses)/1000)
CEIL((NTASK * 2)/1000) '
CEIL((NSEC * 2)/1000)

2 * CEIL((NINC - 1)/1000)

2 ¢ CEIL(NINC/1000)

4 Records per Track

Records

+ + 4+ 4+ U

+

The # of Task and Secondary Responses is found on the INPSTD summary
page printed at the end of the INPSTD output.

CREATED

Records = 4 + (# Potential 1000 Element Created Rows/Columns)
4 Records per Track

SYMTAB?2

Records = 120 @ 960 Bytes per
18 Records per Track = 8 Tracks

22-

R

e b o e ie AL X e e S A~ - St 2T Y

INITIAL2

INITIAL2
PROGRAM TO INITIALIZE THE REARNG AND INTERPRETER FILES

s —
. /7% JCL SETUP. INITIAL2 PROGRAM, L .

//% SAMPLEDATABO DATA, [

/7% *

/79 ve Sansrensansne bl

// EXEC FG,REGION®236K
//FTDIFO01 DO DSNmDATABASE,D)SP=(NEW,CATLG) ,UNIT=SYSDA,
/7l DCO=(DSORG=DA) , SPACE= (4000, (9))
//FTO8F001 OC DSWEATED.DlSP'(NEH CATLG) ,UNI T=SYSDA,
// OCB=(DSORG=DA) , SPACE'(MOO.HO))
//FT13F001 DO DSN=SYMTAB2, DlSP'(NEN CATLG) ,UNIT=SYSDA,
17/ oce-(usms-on SPACE=(960, (120))
//FT14F001 00 DS*CMDFILE.DISP'(NEH,CATLG) UNITeSYSDA,
// 0CBe= (RECFM=FB ,LRECL=80, BLKSIZE-GIGO),
// SPACE-(TRK.(I))
//SOURCE DC *

C-

C INITIALZ PROGRAM,

C PROGRAM TO INITIALlZE THE FILES NECESSARY TO

C EXECUTE THE REARNG DATABASE CREATION ROUTINE AND
C THE CODAPSO INTERPRETER, SAMPLEDATASO DATA,

C=
REAL DATABS(1000), CREATE(1000), SYMTB2(240)
DEFINE FILE 1 (9, 1000,U,IREC)
DEFINE FILE 8 ¢ 10, 1000,U, IREC)
DEFINE FILE 13 (120, 240,V,1REC)

C WRITE INITIALIZATION RECORDS TO DATABASE
C

OQOOQ00

00 140 J=1,9 .
DO 130 K=1,1000 .

130 DATABS(K) =J
IREC=

REC=J
140 WRITE (1'1REC) DATABS

C=
C WRITE INITIALIZATION RECORDS TO CREATED
Ce

DO 160 J=1,10
00 150 K=1,1000
150 CREATE(K)=J
IRECsy
160 WRITE (8'IREC) CREATE

C-
C WRITE INITIALIZATION RECORDS TO SYMTAB2
Ce

00 180 J=1,120
00 170 K=1,240
170 SYMTB2(K)=)J
IRECuJ
180 WRITE (137 IREC) SYMTB2

C
C WRITE INITIALIZATION RECORD TO CARDFILE
Ce

REWIND14

WRITE (14,9999)
9999 FORMAT(9HMCARD FILE)

STOP

END
//SYSIN oo *

24

REARNG
INTRODUCTION

REARNG (Data Rearrangement) alters the physical structure of the data-
base to allow more efficient access to and retrieval of data items. Before
data rearrangement occurs the physical records of the files making up the
database hold information about many variables for one incumbent. After
data rearrangement they hold information about many incumbents for one vari-
able.

REARNG is the last step in preparing the database for use by the
CODAP80 interpreter. In most studies, REARNG will immediately follow
OGROUP. If OGROUP is omitted, then REARNG will follow INPSTD.

NOTE

The data access routines in the CODAP8) interpreter assume that the
data are physically laid out as they will be after successful execution of
REARNG. The interpreter will not function if the database has not been
rearranged.

If the OGROUP routine has been executed, the REARNG routine will store
the incumbents in hierarchical sequence order. If the OGROUP routine has

not been run, the incumbents will be stored in the order they were origi-
nally received by INPSTD.

NOTE

There are no control cards for the REARNG routine.
REARNG
EXECUTION SETUP
The setup necessary to execute the REARNG database creation routine may

be found on the following page. The only output generated by REARNG is
whether or not the run was successful.

28

At n

REARNG

REARNG

EXECUTION JCL FOR REARNG DATABASE CREATION ROUTINE

[/ RS RSB E AN I SD 50 BRI RN 00
/7%
//* JCL SETUP TO EXECUTE THE REARNG DATABASE CREATION *
//%* ROUTINE, REARNG iIS STORED AS A MEMBER IN POS LOAD '
;;: MODULE CODAP8O, .

W Adetdd # R RHHMHNHHHH B0 08

// EXEC P@'-REARNG.REGION-”ZK

//STEPLIB DD DSNsCODAP80O,D1SP=SHR

//FT01F001 DD DSN-DATABASE,DISP-OLD

//FT02F001 DD DSN=INPFILE,DISP=OLD

//FTO6FO01 DD SYSOUT=A

//FT12F001 DD DSN=SYMTAB1,D{SP=QLD

//FT13F001 DO DSNe=SYMTAB2,D1SP=OLD

//FT15FQ01 DD NSNeGRPF ILE,D|SP=OLD

//FT16F001 DO DSNeGRPHSN,D|SP=OLD v
//FT24F00) DD DSNe84TEMP24,UNITeSYSDA,D!SPs (NEW, DELETE).
// DCB=(RECFMeF , LRECL=3600,BLKS1ZE=3600),
// SPACE-(!OOO,(’OOO.I))

28

Aty g,

THE CODAPS0
INTERPRETER

INTRODUCTION

Up to this point, the reader has been made .familiar with the database
creation phase of CODAP80., The rest of this manual is to familiarize the
reader with the phase of CODAP80 that will actually generate the summary
statistics and reports necessary in the analysis of occupational infor-
mation.

The following portion of this manual will cover the principles of the
CODAPS0 language, the building blocks by which CODAP80 language statements
are written, the individual procedures existing in the CODAP80 system for
manipulating the database and producing reports and will illustrate, through
the use of syntax graphs (a kind of map detailing the syntax keywords
allowed in a procedure and the organizational path of proper procedure
statement construction) and examples, the method by which the system is used
as a tool by the job analyst.

At the present stage of development, there are 17 procedures for data

base manipulation and reporting residing in the CODAPS80 system.
These 17 procedures are:

ADDATA INPUT
AVALUE PRINT
BEGIN RANDOM
CLUSTER RELY

COoPY REPORT
CORR ' SELECT
CREATE STANDARD
DESCRIBE VARSUM
END

The function, syntax and options of each of these procedures are
detailed. Esch of the CODAP80 interpreter procedures are presented in
alphabetical order. Appendix A contains a complete CODAPS80 interpreter run
sequence as would be submitted to the computer by a user. The presentation
order of the procedures appearing in this run sequence are loosely organized
in a manner consistent with the steps traditionally taken in job analytic
studies. It should be recognized though that CODAPS0 represents a signifi-
cant departure from previous occupational data analysis computer systems,
both in the power that can be brought to bear on the occupational database
and in the conceptualization of how the job analyst goes about answering
questions of occupational information.

27

CODAPS0
PRINCIPLES OF THE CODAP80 LANGUAGE

WHY A LANGUAGE?

CODAPS0 is a specialized. and extended database management system. It
stores, retrieves, and processes data in an organized and systematic manner
without redundancies. As such, some facility is needed to instruct the
system exactly which of its many functions should be performed in a given
situation.

Many database management systems use a data manipulation language as
the vehicle for communication between the user and the system. This idea
was borrowed for CODAP80, and then extended. The CODAP80 language does
indeed give the job analyst most of the functions that a data manipulation
language would, but ‘it goes farther by also providing statistical and
analytical procedures unique to job analysis in their current application.

DESIGN GOALS

The CODAPS0 language was designed with several purposes in mind,
including:

- providing the job analyst with a powerf tool for
accomplishing general data management .

- providing the job analyst with a computerized eapibi]ity to
carry out any known or foreseeable type of job-analysis
related data processing

- providing the job analyst with a simpl.e. easy to learn, and
easy to use method for performing basic job analysis.

ENGLISH-LIKE SYNTAX & SEMANTICS

The CODAPS0 language is English-like. It can be used to write programs
of statements that resemble sentences. A reader who understands the basic
function of the action invoked by each CODAP80 verb can read through a
program written by someone else and still gain a good understanding of what
the program did.

CODAPS0 statements begin with a verb or other major key word describing
the action to be performed.

Variable names and options appear as qualifiers in the CODAPS0
statement. :

Each statement ends with a period.

Commas and blanks are used as delimiters between keywords and other
segments of the statements.

CODAPS0

FREE FORMAT

CODAPS0 statements in general may appear anywhere on the card image.
Card column dependencies have been avoided in the language. Statements may
even cross card image boundaries.

HOW USED

To cause the CODAP80 system to perform job analysis functions, the job
analyst prepares a CODAPS0 source program with statements in the proper
order to specify the desired actions, then submits the CODAP80 source pro-
gram to the CODAPS0 interpreter. The interpreter will validate the program,
translate it into appropriate internal representation, and execute it,
generating reports and manipulating data as specified by the program.

CODAPS80 IDs

Created IDs, that is, IDs that are added to the database after database
creation, may be up to 12 characters long. The first character must be a
letter or underscore and contain no special characters ($, &, @, #, -, etc.)
other than the underscore.

RESERVED
WORDS

Certain words or sets of characters may not be used as created IDs.
The words in question are already being used by CODAPSO as part of its work-
ing vocabulary. See the section on CODAPS0 reserved words to identify which
ones they are.

CODAPS80 LIMITS

No more than 300 created IDs may occur in a single CODAP80 run stream.
No more than 2000 unique words may appear in a CODAP80 source program.

SYNTAX ERROR
HANDLING

CODAP80's interpreter scans the language source input by the user and,
if a procedure statement is used improperly, or a keyword is misspelled,
flags the error with a dollar sign ('$"), changes the status of the run to
one of syntax checking only, and prints out an appropriate error message (if
possible). If even one error is detected, the CODAPS80 source language
statements will not be executed.

CODAPS80

As an example, note the following source language statements:

BEGIN SAMPLEDATABO EXECUTE,

PRINT COLUMNS (INCMBENTS) NOREMARKS / ROWS (H1=HS)
HEADING= 'PRINT COMMAND CONTAINING SYNTAX ERRORS',

ENO,

CODAP80 will respond tathe errors (INCUMBENTS spelled wrong, and there
is no H5 on the database) in the above statements in the following way.

PRINT COLUWS. (INHBENTS) ROREWARKS / ROWS (H1~HS)
ERROR MESSAGE 25 :

ERROR MESSAGE 9 ’
ERROR MESSAGE 40 ’

ENDHEADI'GI'PRINT COMMAND CONTAINING SYNTAX ERRORS'.,
.

ERROR FOUND IN SOURCE CODE=EXECUTION PHASE CANCELLED

ERROR MESSAGES

9 INTEGER PORTION OF SYSTEM VARIABLE TOO LARGE
25 A GROUP NAME HAS NOT BEEN SPECIFIED
40 EXPECTING HISTORY VARIABLE IN SEQUENCE

CODAP80 INTERPRETER
EXECUTION SETUP

A complete CODAPS0 interpreter run stream, with JCL setup, may be found

on the following page. Note that some of the files that were necessary
during database creation no longer appear.

30

CODAPS0 -

CODAPS80 INTERPRETER
EXECUTION JCL FOR THE CODAP80 INTERPRETER

//

//* JCL SETUP TO EXECUTE THE CODAP8O IWERPRm THE *
//% INTERPRETER (INTERP) IS STORED AS A MEMBER IN PDS *
//' LOAD MOOULE CCDAPGO. *
// EXEC PGM=|NTERP,REGION=820K

//STEPLIB DD DSN=CODAP80,D|SPeSHR

//FTO1FO01 DD DSN=DATABASE,DISP=OLD

//FTO5F001 DD DONAMEsSYSIN

//FTO6F001 DD SYSOUT=A

//FTO7F001 DD SYSOUT=B

//FTOBF001 DD DSN=CREATED,DISP=OLD

//FT10F001 0D DSN=VARCOM,D{SP=OLD

//FT13F001 DD DSN=SYMTAB2,DISPeOLD

//FT14F001 DD OSN=CARDFILE,D|SP=0LD

//FT17F001 DD OSN=DECODE ,DISP=OLD

//FT18F001 DD DSN=ERRORFIL,D|SP=SHR

//FT20F001 DD OSN=LATEMP20,UN| TeSYSDA,DISP=(NEW,DELETE),

// DCBs= (RECFMaF , LRECL=3600,BLXS IZE=3600) ,

// SPACEs (3600, (6000, 1))

//FT21F001 DO DSN=3ATEMP21,UNITsSYSDA,D1SP=(NEW,DELETE),
/7 OCB= (RECFMaF , LRECL=12960,BLKS1ZE=12960) ,
// SPACE=(12960,(1550,1))

//FT22F001 DO DSN=ALTEMP22,UN1 T=SYSDA,DISP=(NEW,DELETE),
// OCBs (RECFM=F ,LRECL= 12960, BLKS 1ZE= 12960) ,

// SPACE=(12960, (1350, 1))
. //FT23F001 DO OSN=SATEMP23,UNI TsSYSOA,D|SP=(NEW,DELETE),
/7 DCB=(RECFMaF ,LRECL=244,BLKSI1ZE=244),
/7 SPACE=(244,(1000,1))
//FT24F001 DO DSN=&ATEMP24 ,UNI TeSYSDA,D1SP=(NEW,DELETE),
/7 OCB=(RECFMs=F , LRECL=3600,BLXS1ZE=3600) ,
// - SPACE=(3600, (6000,1))
//mst-‘om 00 OSN=LATEMP29,UNIT=SYSDA,D I SP=(NEW,DELETE),
/7 OCB=(RECFM=F , LRECL=3600,8LKS 1ZE=3600),
// SPACE={3600, (6000, 1))
//FT26F001 DD DSN=48TEMP26,UN| T=SYSDA D1 SPe(NEW,0ELETE),
/7 DCB=(RECFM=F ,LRECL=4000,BLKS 1ZE=4000) ,
// SPACE=(4000, (200, 1)) .
//8YSIN 0o *
BEGIN SAMPLEDATAB0 EXECUTE.
CLUSTER COLUMNS |NCUMBENTS FOR TASKS OVL MAXIMIZE
INCHSN NOSAVE 'INCUMBENT HSN!
M NMEM=2
HEADINGs* | NCUMBENT CLUSTERING',
ADDATA ROWS FOR INCUMBENTS N=5
TRACTOR NOSAVE 'OPERATE TRACTOR®
JACKHAMMER NOSAVE 'OPERATE JACKHAMMER!
BULLDOZER NOSAVE 'OPERATE BULLDOZER*
POWERWRENCH NOSAVE 'OPERATE POWERWENCH'
FLAMETHROWER NOSAVE 'OPERATE FLAMETHROWER' FORMAT '(7F1,0)°',
SELECT ROWS NEWOUTY (M4 TRACTOR JACKMAMMER BULLDOZER POWERWENCH FLAMETHROWER
INCHSN) NOSAVE 'NEWOUTY',
PRINT ROMS (NEWDUTY) / COLWS (INCUMBENTS) MISSING
HEADING= ! THE CODAPS0 [NTERPRETER',

END,

1100011
0010100
1100000

1001000
0000001

31

e e e e awAL. ghs AT e TR e L] VL A = Y wn = e 7n’ A WAL AV EAe 1t m s e L = e

R P 0 [.%:w;{'_f e Tt e e

CODAPS0

CODAP80 RESERVED WORDS \
THE FOLLOWING WORDS MAY NOT BE USED AS CREATED IDS

ADDATA HYARS SELECT
. ADJUST F . SORT

. ALL iN SQRT
AVALUE INCS SROWS
AVE INCUMBENTS STANDARD
AVGA INPUT STAT
AVGP L STD
e LIST STD
BEGIN MAX STDA
81 NARY MAX [MIZE STOP
8Y MEAN SUM
CARD MIN SUMONLY
CONST MINMEM SVARS
cCpLS MISSING SYSCNST
CGRPS, MODS SYSCOLS
CLUSTER MODULES SYSGROUPS
CMODS N SYSMODS
coL NHIST SYSROWS
coLS NINCS TAPE
COLUMN NONZERO TASKS
COLUMNS NOPAGE THEN
CONSTANTS NOREM TROWS
COPY NOREMARKS TVARS
CORR NORESET USING
COUNT NOSAVE VARSUM
CREATE NOSKIP WITHIN
CROWS NOSTID
CuM NOSUMMARY
0 : NOT ,
DECODE NSEC
DES NTASK '
DESCEND ON

DI1AGRAM OVLGRP
DISTANCE PAGE
DSQUARE PCNT
PERCENT
ELSE PRINT
RANDOM
EXECUTE RAWSUM
FOR REL
FORMAT RELY
FROM REPORT
GROUPS RESET
HEADING ROW
HROWS ROWS
HSN SAVE
v
32 . . '

e -

THE SAMPLE DATABASE
INTRODUCTION

.The sample database was generated through the execution of the database
creation routines (INPSTD, OGROUP and REARNG). The value found in the
sample database will be used in the examples given of the CODAP80 procedure
language statements which appear in the rest of this manual. The sample
database provides a consistent point of reference for creating meaningful
examples. By examining the database, the reader should be able to determine
just exactly where the numbers generated by the example CODAP80 procedure
language statements came from and thereby gain a better understanding of the
function of each language statement.

THE SAMPLE
DATABASE

In the sample database there are seven incumbent workers; each having
been asked to respond to four history variables (H1-H4), five task variables
(T1-T5) and five secondary variables (S1-8§). The incumbent worker
designations represent the columns of the database and the variables the
incumbents are measured on represent the rows of the database. Referring to
the row variable H4 (Incumbent ID), the reader will notice that the
incumbents are not in the order in which they were originally input (see
INPSTD). Following INPSTD, OGROUP was run on the database. When the main
OGROUP clustering routine is ever executed on the database, the REARNG
routine will reorganize the database by sorting the incumbents in ascending
hierarchical sequence number (HSN) order as defined by the OGROUP routine
(this reorganization as a function of HSN is for purely internal systems
level processing - the user only needs to be aware that a reorganization has
occurred). Had the main clustering routine not been run on the database,
REARNG would have left the database in the order in which it was originally
input.

SYSTEM
CLUSTER GROUPS

The ID's G1-G6 are system cluster groups generated from the execution
of the OGROUP routine. They represent the incumbent aggregates that were
formed during the cluster operation. Any future reference to any of these
system group ID's in CODAPS0 language statements will serve to identify to
the system which incumbents (columng) are to be addressed for processing.
For example, were the system cluster group ID 'G4' to be referenced, the
CODAP80 system would direct processing to columns 1-3 of the database.

DATABASE
VALUERS

All asterisks (*) ocourring in the sample database indicate a missing
value. Some of the values in the database have been rounded.

33

,oed + i L\ v'—.':“”f‘" ke
= T Rt
: e

M RTRPRALE r1.~n’ 2 %» lm,vMM r—ﬁ _,.. n a,f,m ww‘#{w
] .

RN
~—

SAMPLE DATABASE

1 12 13 14 I5 18 I7
Hl [Z [T {2 T 111111
H2 [19 |23 | * |4l |27 {33 | *
H3 [1 | 2 |11 [19 | 3 [30 [186
He [1 [5 [7 2 1 463 STUDY ID
T1 |64 (11 | 0 |11 24 |36 [0 SAMPLEDATAS0
T2 [9 |11 | 0 |44 [24 |64 |43 .
T3 [9 22 [20 | 0 |18 | 0 |57
T4 [18 56 [50 [22 [0 | 0 [0
TS [0] 0 |30 |22 |35 | 0 | 0
S1 » . » 2 - 2 .
s2 [T | 1T | *® 2 1173
s3s [1 | 22 * | 1]+ 3
sa [2 [T[22z | * [+ =
ss [* | * [T [T 3 ~*][~*

DATABASE REMARKS

H1 SEX
H2 AGE
H3 YEARS ON JOB

H4 INCUMBENT ID

Tl SUBDUE VIOLENT INMATES
T2 SHAKE DOWN INMATES

T3 SHAKE DOWN VISITORS

T4 ESCORT INMATES

T5 TESTIFY IN COURT

S1 SECONDARY
§2 SECONDARY
S3 SECONDARY
S4 SECONDARY
85 SECONDARY

SYSTEM GROUP COLUMN AGGREGATES

G5 14 I5 16 I7
Gé6 I1 12 I3 14 IS 16 I7

SUBDUE VIOLENT INMATES
SHAKE DOWN INMATES
SHAKE DOWN VISITORS
ESCORT INMATES

TESTIFY IN COURT

34

ADDATA
INTRODUCTION

PURPOSE

The ADDATA procedure provides the means by which multiple rows or
columns may be appended to an existing CODAP80 database. In addition, the
user may optionally request that the elements of the rows or columns being
appended be relativized to a percentage scale. The ADDATA procedure is
particularly useful for adding large amounts of information to a database
that was not available when the database was originally created.

FORM
The general form of the ADDATA procedure is as follows:

1) The procedure keyword ADDATA.

2) The keyword ROWS or COLUMNS. This keyword alerts the
system that either rows or columns are being added to the
database.

.3) A group or module designation representing the "length"
or number of elements that are contained in the row(s) or
column(s) being added.

4) A designation of the number of rows or columns being
added and, optionally, those elements of the rows or
columns that are to be relativized.

5) A user supplied valid CODAPS80 ID (or IDs) to be
associated with the added row(s) or column(s).

6) A user supplied FORTRAN format for reading=-in the row(s)
or columns(s) being added to the database.

7) Options controlling the permanence of the added ID(s),
missing value considerations and whether or not the added
information is to be printed.

EXAMPLE

BEGIN SAMPLEDATA80 EXECUTE.

ADDATA ROWS FOR G6 N=1
SANDBLASTER 'OPERATE SANDBLASTER'
FORMAT '(7F1.0)'.

END.

0110010

In this example, a single new row named SANDBLASTER is being added to
the database. There will be a value of SANDBLASTER for every column
associated with the system group ID G6 (I1-17, see Sample Database). The
string OPERATE SANDBLASTER, enclosed in single quotes, is the remark to be
associated with the new row. The keyword FORMAT signifies that the row ID
SANDBLASTER is to be read with the following format specification that is
encliosed in single quotes and parentheses.

33

ADDATA

OUTPUT FROM PROCEDURE

The result of executing the ADDATA procedure will be new rows or
columns optmnauy added to the database. Specification of the optional
keyword LIST .in the syntax of the ADDATA procedure will produce a printed
listing of the rows or columns being added. ‘

36

ADDATA

’ ADDATA SYNTAX

Refer to the syntax graph of the ADDATA procedure.

ADDATA
The keyword ADDATA identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates whether the data being added are
conceptual rows or columns of the database.
FOR

The FOR keyword alerts the ADDATA procedure to expect a following group
or module ID.

‘ GROUP ID

A group ID is an identified aggregate of database columns. If the
preceding data type designation was ROWS, then a group ID must follow the
FOR keyword. The group ID may be one previously defined through the use of
the SELECT procedure, one of the CODAP80 system cluster groups (as defined
at database creation time by the OGROUP routine) or the CODAP80 system group
INCUMBENTS. The group ID specification serves to indicate to the ADDATA
procedure the database columns for which the new rows are being added. The
group ID also serves to indicate the "length" or number of elements the
added rows will have.

MODULE ID

The module ID is an identified aggregate of database rows. If the
preceding data type designation was COLUMNS, then a module ID must follow
the FOR keyword. The module ID may be one previously defined through the
use of the SELECT procedure, or may be one of the CODAPS0 system modules

! HVARS, TVARS, TASKS or SVARS. The module ID specification serves to
indicate to the ADDATA procedure the database rows for which the new columns
are being added. The module ID also serves to indicate the "length" or
number of elements the added columns will have.

37

R A Ko o1 B i e

N

- <oy

N

ADDATA

N
ASSIGNMENT OPERATOR
CONSTANT

The ADDATA procedure requires the user to specify the number of rows or
columns that are being appended to the database. For example, were the user
to be adding five new rows to the database it would be necessary to
:ppropriately specify the syntax "N=5" to alert the ADDATA procedure of this
act.

REL
CONSTANT LIST

The optional appearance of the keyword REL followed by a constant list
indicates to the ADDATA procedure that all or part of the rows or columns to
be appended are to be relativized to a 100 point scale. This option allows
additional incumbent raw time spent responses to be conveniently- converted
to percent time spent values.

The constant list following the REL keyword provides the means by which
the user can specify which elements of the appended rows or columns are to
be relativized. The form of the constant list consists of integer numbers
enclosed in parentheses. For example, specification of the constant list
"(5, 7, 10-12, 14)" indicates that the fifth, seventh, tenth thru twelfth
and fourteenth elements of the appended rows or columns are to be
relativized. See'Example 1 of ADDATA.

ID

The. user has two choices in how ID's can be specified to the ADDATA
procedure. Which choice the user picks is determined by whether or not the
user wants to individually name each row or column added to the database or

to let the procedure append a numeric value to a supplied "seed” ID. See
Examples 2 and 3 of ADDATA for illustration.

NOSAVE

Specification of the optional keyword NOSAVE indicates that the added
rows or columns will exist on the database only for the duration of the
computer run.

REMARK

This is a string of up to 240 characters enclosed in single quotes.
The remark will be associated with the added rows or columns. A remark must
be associated with the added rows or columns.

LIST

Specification of the optional keyword LIST indicates that a printed
listing of the added rows or columns is to be produced.

Py

ADDATA

MISSING
ASSIGNMENT OPERATOR
CONSTANT

Some of the elements of the rows or columns to be added to the database

.may be missing (as opposed to being zero or blank). To si the ADDATA

procedure that a given value is missing, choose a unique integer constant as
the identifier in the missing option. For example, suppose the user was
adding a new row to the database, and one of its five elements was missing.
By indicating a unique integer constant in the missing option (let's say
99), the ADDATA procedure would then know that any values of 99 that were
input as the new row should be set to missing (see ADDATA Example 3).

FORMAT

The FORMAT keyword serves to indicate to the ADDATA procedure that the
following string enclosed in single quotes is to be used as the input format

_for reading-in the values of the rows or columns to be added.

FORMAT SPECIFICATION

The format specification for the ADDATA procedure may be any valid 1966
Ansi Standard FORTRAN format in parentheses, enclosed in single quotes. The
format will be used by the ADDATA procedure to read-in the values of the
added rows or columns. The place in the input stream of a CODAP80 source
language program where the values of the rows or columns to be added are to
appear is directly after the terminating END statement (see ADDATA
Examples). For an explanation of FORTRAN formats, consult any introductory
FORTRAN text.

PERIOD
A period ('.') must end the ADDATA statement.

39

g —

ADDATA
ADDATA EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATAS80 EXECUTE. .
SELECT ROWS SYSTEMROWS (H1-H4, T1-T5, 81-85)
'ALL SYSTEM ROWS ON DATABASE'.
ADDATA COLUMNS FOR SYSTEMROWS N=1 REL (5-9)
CASEID_8 'CASEID=8' FORMAT '(F1.0, 2F2.0, 11F1.0)'.
END.
2270487964111122

The above example is illustrating how the data for an incumbent worker
may be added to an already existing database. Raw time spent responses from
the incumbent are to be relativized to a 100 point percentage scale.

The SELECT procedure is first being invoked to create a module (named
SYSTEMROWS) containing all the system rows on the database (see Sample
Database). The ADDATA syntax is requesting that a single new column (as
indicated by the N=1 specification) be permanently added to the database,
and that it be named CASEID_8. The new column will have an element for
every system row on the database (as defined by the created module
SYSTEMROWS). The specification REL (5-9) indicates that the fifth thru
ninth elements of the column to be added are to be relativized to a 100
point percentage scale (the fifth thru ninth elements of the new column
correspond to the task rows of the database). After execution of ADDATA
Example 1, the new created column will conceptually reside on the database
as follows:

CASEID_8
H1 2.00
H2 27.00
H3 4.00
H4 8.00
T1 25.93
T2 33.33
T3 22.22
T4 14.81
T5 3.70
s1 1.00
s2 1.00
s3 1.00
sS4 2,00
S5 2.00

40

. A UL L g
R P e Nn’-’# R TR R R PR

ADDATA

EXAMPLE 2

BEGIN SAMPLEDATAS80 EXECUTE.
ADDATA ROWS FOR G6 N=5

TRACTOR 'OPERATE TRACTOR'
- JACKHAMMER 'OPERATE JACKHAMMER'

BULLDOZER '‘OPERATE BULLDOZER'
POWERWENCH 'OPERATE POWERWENCH'
FLAMETHROWER 'OPERATE FLAMETHROWER'
FORMAT '(7F1.0)'.

END.)

1100011

0010100

1100000

1001000

0000001

The ADDATA syntax in Example 2 is requesting that 5 new rows be
permanently added to the database. The rows will have an element for every
incumbent (system) column on the database (as indicated by the system
cluster group G6). After execution of ADDATA Example 2, the new created
rows will conceptually reside on the database as follows:

11 12 13 14 15 16 17
TRACTOR 1.00 1.00 0.00 0.00 . 0.00 1.00 1.00
JACKHAMMER 0.00 0.00 1.00 0.00 1.00 0.00 0.00
BULLDOZER 1.00 1.00 0.00 0.00 0.00 0.00 0.00
POWERWENCH 1.00 0.00 0.00 1.00 0.00 0.00 0.00

FLAMETHROWER 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Once the new created rows have been appended to the database, they may
be used by other CODAP80 procedures for processing.

EXAMPLE 3

BEGIN SAMPLEDATA80 EXECUTE.

ADDATA ROWS FOR G6 N=%
EQUIPMENT 'OPERATE EQUIPMENT'
MISSING = 9 FORMAT '(7F1.0)'.

END.

1199911

9919199

1199999

1991999

9999991

The ADDATA syntax in Example 3 is requesting besically the same thing
as that in Example 2. Namely, that 5 new rows be added to the database.
The primary difference between Example 2 and 3 is that, in Example 3, the
user has opted not to individually name each of the added rows. Instead,
the user has supplied a "seed" ID (EQUIPMENT) that will have a numeric value
(beginning with the number 1) appended to it for every row being added.

41

ADDATA

Specification of the optional syntax MISSING=9 indicates to the ADDATA
procedure that any elements of the rows being added that are equal to 9 are
to be set to a missing value.

42

ADDATA

gwnu— N " ANVL HOAVHILO
ivnyos: | ¢ ANIIWNDIESY
e | G

in
INVISNOD

HOLVY34O

-G

-G

43

Pt AP S AR—— - AP 1P ot

AVALUE
INTRODUCTION

PURPOSE

The AVALUE procedure will compute statistics on any specified aggregate
of database rows (a modyle) across one or more specified aggregates of
database columns (a group list). In this respect it is similar to the
DESCRIBE procedure. The difference between the two though is that unlike
the DESCRIBE procedure, which uses the actual values of the row or column
being processed to determine the desired statistic, the AVALUE procedure
substitutes the values from a specified row for the appropriate values of
the rows being processed before determining the desired .statistic. The
AVALUE procedure is particularly useful in answering questions having to do
with determining for each task the average age, income or job title (any
database row may be specified) of those incumbents of interest perfonnmg
the tasks (any module may be specified).

FORM
The general form of the AVALUE command is as follows:

1) The procedure keyword AVALUE.

2) The data type designation ROWS.

3) A description of the aggregate of rows upon which the
procedure is to calculate statistica (specified in the
form of a module ID).

4) A description of at least one column aggregate (specified
in the form of at least one group ID) across which row
statistics are to be calculated.

$) A row ID, the values of which will be substituted for the
appropriste values of the rows being processed in 3.

6) A new ID. The new ID will have & numeric value, ranging
from 1 to the number of group IDs specified in 4,
appended to it by the system. The user must be careful
not to specify an ID that will conflict with one
previously defined in the database. The user must also
take care to specify an ID that, when the numeric value
is appended to it by the system, is not longer than 12
characters. If only one column aggregate (group ID) is
specified in 4, then a numeric value is not appended to
the new ID. .

7) One of the statistical functions: AVGP, AVGA, STDP,
STDA, SUM or N. The function specified defines the type
of statistic AVALUE will compute for the values
substituted from the row specified in S.

8) Optionally, the keyword NOSAVE.

9) Descriptive text (a remark) supplied by the user that
will be associated with the new column IDs added to the
database.

4

- Sy, . .
BT O ,v,h‘.:. T A S T e A el s s e ™Y
IR A S > N ST s . ;

AVALUE

10) Either a period or semicolon. If a period is specified,
then the AVALUE command syntax will be finished. If a
semicolon is specified, then a new set of syntax de-
scribed in 6-10 above will follow.

NOTE: The AVALUE procedure is one of the few proce-
dures in CODAPS0 that is not symmetric. AVALUE
may only be used to calculate statistics on rows
measured across columns.

EXAMPLE

AVALUE ROWS TASKS FOR (INCUMBENTS) USING H2
H2INCAVGP := AVGP NOSAVE
'AVERAGE AGE FOR INCUMBENTS PERFORMING TASK'.

The above AVALUE command syntax will calculate, per task, the average
age of the incumbents who are performing the task. An average age (H2) is
to be calculated for every task row on the database (as indicated by the
system module TASKS) across all incumbent columns (as indicated by the
system group INCUMBENTS). The new column ID will be designated HzINCAVGP
but will not be permanently saved on the database.

OUTPUT FROM PROCEDURE

Execution of the AVALUE procedure produces no printed output. For
every group ID specified in the group list, AVALUE will optionally add a new
column to the database.

45

et —— -

e

t o,
7 S SRR RO 5 LS L xg oA e gy oy

AVALUE
AVALUE SYNTAX
Refer to the syntax graph of the AVALUE procedure.

AVALUE
The keyword AVALUE identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS indicates that AVALUE is to perform its calculations
on rows of the database.

MODULE ID

A module ID is any defined aggregate of database rows. The module ID
may be one previously defined through the use of the SELECT procedure, or
may be one of the sytem modules HVARS, TVARS, TASKS or SVARS. ThemoduleID
specification serves to identify to the AVALUE procedure the database rows
upon which statistics are to be calculated.

FOR .

The FOR keyword serves to indicate to the AVALUE procedure that the
following group list identifies those aggregates of database columns scross
which calculations are to be performed.

GROUP LIST

A group list is a list of at least one group ID enclosed in paren-
theses. Created group IDs (such as would be generated by SELECT), system
group IDs (such as the keywords INCUMBENTS or INCS) and system group lists
(such as G1-G3, as defined by clustering at database creation time) may all
appear in a group list. Each group ID specified in the group list repre-
sents a different aggregate of database columns across which statistics for
a row are to be calculated.

USING
The USING keyword serves to alert the AVALUE procedure that the follow-

ing row ID is to provide the values to be substituted when calculating the
row statistics across column aggregates.

46

L o e B e LA .
hd !.’,1'7* IBER oy Ty vé‘w AN pe o meghs o glag mn o

e

‘ _AVALUE

ROW ID

The row ID specification may consist of any existing row on the
database. The row ID specified will provide the values to be substituted
when calculating row statistics across column aggregates.

ID

A user supplied "seed" ID. Appended to this ID will be a numeric
value, ranging from 1 to the number of group IDs specified in the group
list (unless, of course, only a single group ID appeared in the group list).
Because AVALUE is not symmetric, all new IDs generated by this procedure
pertain to added database columns.

ASSIGNMENT OPERATOR

Either of the symbols '=' or ':='. Either of these symbols may be used
to separate the seed ID from the statistical function that follows.

STATISTICAL FUNCTIONS

The statistical function specified defines the type of statistical
operation performed across columns by AVALUE on the substituted row values.
The six acceptable statistical function keywords are as follows:

*AVGP - Average, excluding missing values.
AVGA -~ Aversge, including missing values.

*STDP - Standard deviation, excluding missing values.
STDA - Standard deviation, including missing values.
SUM - Sum of non-missing values.

*N - Number of non~missing values.

*If a calculation is being performed on task rows across columns, zeros
are interpreted as missing.
NOSAVE

Specification of the optional keyword NOSAVE indicates that any new
columns generated through the execution of the AVALUE procedure are not to
be permanently saved for future reference.
REMARK

This is a string of up to 240 characters, enclosed in single quotes.

The remark will be associated with the new column IDs generated. A remark
must be associated with the new IDs. ’

4

S

AVALUE

PERIOD OR SEMICOLON

A period ('.') must end the syntax of the AVALUE procedure. If the
user desires to calculate more than one statistic on the same database
subset, the command syntax may be terminated with a semicolon, followed by
the specification of a new ID, statistical function and a remark (see AVALUE

example 1).

48

A watpame S v e ,‘»:ﬁ!w'f“; I T LRI SR

AVALUE
AVALUE EXAMPLES

EXAMPLE 1 .
AVALUE ROWS TASKS FOR (G6) USING H2
AVGPAGE := AVGP
TAVERAGE AGE (AVGP), G6';

STDPAGE := STDP
'STD AGE (STDP), G6'.

The above AVALUE command syntax will calculate, for each task row ¢on
the database (as designated by the system module TASKS), the average and
standard deviation (AVGP and STDP, missing values excluded) of age (H2) for
those incumbents performing the task. All incumbent columns of the database
(11-17) will be included in the ‘calculations owing to the specification of
the system cluster group G6. Execution of the above syntax will result in
two created columns, each 5 elements long (one for each task) being added to
the database. The created column AVGPAGE will contain the average age of
the incumbents performing the tasks and column STDPAGE will contain the age
standard deviations. Note the use of the semicolon in the command's

syntax.

The command syntax AVALUE ROWS TASKS FOR (G6) USING H2 defines the
following data subsets of the Sample Database that will go into the
computations:

L 2 13 M 5B I8 I7
Tl 64 11 0 11 24 36 0
T2 9 11 0 4 24 64 43
T3 9 22 20 0 18 0 57
T4 18 56 S50 22 0 0 0
TS 0 0 30 22 35 0 0

H2 19 23 . 41 27 &3 .

The values that will be computed for the five elements (one per task)
of the created column AVGPAGE are as follows:

AVGPAGE (1) = (19+23+41+27+53)/5 = 32.6
AVGPAGE (2) = (19+23+41+27+53)/5 = 32.6
AVGPAGE (3) = (19+23+27)/3 = 23.0
AVGPAGE (4) = (19+23+41)/3 = 27.7
AVGPAGE (5) = (41+27)/2 = 34.0

The values that will be computed for the five elements (one per task)
of the created column STDPAGE are as follows:

STDPAGE (1) = (((192+232+412+272+532)-((19+23+41+27+53)2/5))/4)*5 = 14.1
STDPAGE (2) = (((197+23% +412+272 4532)~ ((19+23+41+27+53)2/5))/4)°3 = 14.1

49

STDPAGE (3)

1}

STDPAGE (4)

]

STDPAGE (5)

(((19% +23%+272)-((19+23+27)2 /3))/2)"3
(((19%+23%+412)-((19+23+41)2/3))/2)*3
(((412+272)-(41+27)2 /2)) /1)

AVALUE

= 4.0

11.7

9.9

The fact that the keyword NOSAVE did not appear in the syntax of AVALUE
example 1 indicates that the two columns (AVEPAGE and STDPAGE) are to be

saved permanently on the database.

For an illustration of a report

displaying the created columns produced above, the reader is referred to

PRINT example 1.

50

-
B R

AVALUE i

} EXAMPLE 2

AVALUE ROWS TASKS FOR (G4, G5) USING H2
AVGAAGE := AVGA
'AVERAGE AGE (AVGA), G4 AND GY'.

The above AVALUE commnd syntax will calculate, for each task row on

the database (as designated by the CODAP80 system module TASKS), the average

(AVGA, missing values included) of age (H2) for those incumbent columns

identified by the CODAP80 system cluster group G4 (Ii1-13), and then again

for the incumbent columns in system cluster group G5 (14~17). Execution of

the above syntax will result in two created columns, each 5 elements long

(one for each task) being added to the database permanently. The two

created columns will be named AVGAAGEL and AVGAAGE2 (the numerals being

appended to the seed ID as a function of the. number of group IDs appearing

i in the group list). Naote closely the difference in the computational

? process applied between the statistical functions AVGP (used in example 1)
and AVGA (used in the present example).

The command syntax AVALUE ROWS TASKS FOR (G4, G5) USING H2 defines

the following data subsets of the Sample Database that will go into the

computations:
I G4 G5

noiz B = XIS R R <4
T1 64 11 0 11 24 36 0
T2 9 11 0 4 24 64 43
T3 9 22 20 0 18 0 57
T4 18 56 50 22 0 0 0
TS 0 0 30 22 35 0 0
H2 19 23 . 41 27 53 .

The values that will be computed for the five elements (one per task)
of the created column AVGAAGE] are as follows:

AVGAAGEL(1) = (19+23)/2 = 21.00
AVGAAGEL(2) = (19+23)/2 = 21.00
AVGAAGEL(3) = (19+23)/3 = 14.00
AVGAAGE1(4) = (19+23)/3 = 14.00

AVGAAGEL(5) =

The values that will be computed for the five elements (one per task)
of the created column AVGAAGE2 are as follows:

' ' AVGAAGE2(1) = (41+27+53)/3 = 40.33
AVGAAGE2(2) = (41+27+53)/4 = 30.25

AVGAAGE2(3) = (27)/2 = 13.50
AVGAAGE2(4) = (41)/1 = 41.00
(AVGAAGE2(5) = (414272 = 34.00 __
51

/
/
! . . » ol - 'Y . LY) : :
W el Sl B e PR)
') . : (R 4 w";“"l_’"‘p R L e AP q&?ﬁn b etk vy gy - e - KTy
- R T . P o , L
. iTaR

—l

GROUP
LisY

—(ron)

MODULE
[]

GG

AVALUE

AVGA

COHED

STDA

ASSIGNMENT
OPERATOR

a4

1 L Y Y e
’ 'Wﬁ?{*‘\ RPN 1-’#".

2

bl

i . - e T A

BEGIN
INTRODUCTION

PURPOSE

The purpose of the BEGIN command is to delineate the beginning of a
CODAP80 source language program, to inform the CODAPS0 interpreter whether
or not the execution phase is to be entered following syntax analysis and to
inform the CODAP80 interpreter of the study ID of the database to be

. processed.

FORM
The general form of the BEGIN command is as follows:

1) The procedure keyword BEGIN,
2) An indication of the database study ID.
3) Optionally, the keyword EXECUTE.

EXAMPLE
BEGIN SAMPLEDATA80 EXECUTE.

The above BEGIN command syntax is alerting CODAPS80 that a source
language program follows. The database to be processed has the ID
SAMPLEDATAS80. The appearance of the keyword EXECUTE indicates that
following syntax analysis, if no syntax errors were found, the execution
phase of the CODAP80 interpreter is to be entered.

OUTPUT FROM PROCEDURE

Execution of the BEGIN procedure produces no printed output. The BEGIN
procedure is not a procedure in the sense that, say AVALUE or DESCRIBE are
procedures. BEGIN performs no calculations on values in the database.
BEGIN serves only to alert CODAP80 that a source language program is being
submitted.

83

I N 0‘ ‘._’w'n\'!‘y'm,ﬁ)‘-, . T lw “;;"?é--" oy éﬁ@..wr N rh camage g R o e o e
- PERE L { ow . o

BEGIN
BEGIN SYNTAX
Refer to the syntax graph of the BEGIN procedure.

BEGIN
The keyword BEGIN identifies the command.

STUDY ID

During the database creation phase of an occupational study a study ID
was assigned by the user. The assignment of a study ID takes place follow-
ing successful execution of the INPSTD database creation routine. The study
ID supplied by the user following the BEGIN command keyword is checked
against that stored on the database and, if they match, processing contin-
ues. If the study ID stored on the database and the study ID supplied by
the user in the BEGIN command do not match, an error is indicated and proc-
essing immediately ceases.

EXECUTE

Specification of the optional keyword EXECUTE indicates to CODAPS0 that
the execution phase of the interpreter is to be entered following analysis
of the source language statements making up the CODAP80 program. The execu-
tion phase will only be entered if no syntax errors are found. If the
EXECUTE keyword is omitted, then processing will automatically cease follow-
ing syntax analysis.

PERIOD
A pericd ('.') must terminate the BEGIN command.

54 .-

—

BEGIN

{ BEGIN EXAMPLES

EXAMPLR 1

BEGIN SAMPLEDATAS0.

DESCRIBE ROWS TASKS FOR (G6)
NEWCOLUMN := AVGA 'A NEW COLUMN'.

END.,

The above CODAP80 source language statements would be analysed for
syntactical errors only. The fact that the optional keyword EXECUTE is not
included in the BEGIN statement will prevent the execution phase of the
CODAPS80 interpreter from being entered.

' EXAMPLR 2
BEGIN SAMPLEDAT80 EXECUTE.
In the above BEGIN statement the study ID has been incorrectly

‘ specified (SAMPLEDATAS0 is the correct study ID). This would result in the
following error message:

STUDY ID - SAMPLEDATS80 IS INVALID. THE INTERPRETER HAS TQ BE
STOPPED FOR SECURITY AND PROTECTION. PLEASE CONSULT USER
MANUAL OR CHANGE TO THE CORRECT STUDY ID.

L1

Teda ' .
R e e
v R N .

. ot . . L b e, ‘-1!6"1,3(&?- ‘%:kj"wvg‘v\. By
. ReX A

BEGIN

CLUSTER
INTRODUCTION

PURPOSE

The CLUSTER procedure will perform hierarchical clustering (based on
Ward, 1963) either on any set of columns (a group) of the database measured
across any set of rows, or on any set .f rows (a module) measured across any
set of columns. In addition, the user will have the option of requesting
any one of four techniques for calculating measures of similarity between
columns or rows (see Appendix B for overlap similarity formulae).

FORM .
The general form of the CLUSTER procedure is as follows:

1) The procedure keyword CLUSTER.

2) A designation of the columns or rows of the database to
be clustered.

3) A designation of which measure of similarity between
columns or rows is to be used by the procedure.

4) A minimum membership designation for the diagram display.

5) A user assigned ID to be associated with the clustered
row or column hierarchical sequence number (HSN).

EXAMPLE

BEGIN SAMPLEDATAS0 EXECUTE.
SELECT COLUMNS MALES (H1=1) 'INCUMBENTS OF THE MALE SEX'.
CLUSTER COLUMNS MALES FOR TASKS OVL MAXIMIZE
MALEHSN
'HSN NUMBER FROM CLUSTERING MALE INCUMBENTS'
MINMEM=2
HEADING='CLUSTERING MALE INCUMBENTS'.
END.

In the above example, the male incumbents are first being selected into
group MALES. The CLUSTER command is then requesting that the elements of
this group be clustered, and that the overlap calculated between the ele-
ments be measured across all the task rows on the database. The overlap
algorithm is to be absolute overlap. The HSN values generated for each
column being ciustered will be assigned the ID MALEHSN. The diagram
produced will have a starting minimum group membership of 2.

OUTPUT FROM PROCEDURZ

Output from the CLUSTER procedure will consist of a group membership
report detailing the clustering process and a diagram report detailing the
clustering proosss pictorially. HSN values generated for the rows or
columns clustered may be added to the database for further processing by
other proocedures.

87

S aa e e e 1

_—

: + "‘v 1 *] a
. iy e . g Qe | g e cae ke e ol |
A e’i"ﬁ{:';-’\'ﬁ“f% - ey x% 2oy i ;v"e_ff Ty

CLUSTER
CLUSTER SYNTAX
Refer to the syntax graph of the CLUSTER procedure.

CLUSTER ’ ' ; .

The keyword CLUSTER identifies the command.

DATA TYPE DESIGNATION

The keyword COLUMNS indicates that the CLUSTER procedure is to cluster
columns on the database. The keyword ROWS indicates that rows on the data-
base are to be clustered. .

GROUP OR MODULE ID

If the data type designation is COLUMNS, then a group ID must fallow.
If ROWS is designated, a module ID must follow. The group or module ID
specifies which columns or rows of the database are to be clustered.

FOR

The keyword FOR alerts the procedure that the following data designa-
tion represents the values of the database across which similarity between
the rows or columns being clustered is to be calculated.

MODULE OR GROUP ID

The module or group ID following the FOR keyword defines the values
across which similarity between the rows or columns being clustered is to be
calculated. If a group ID occurs before the FOR keyword, then a module 1D
must follow. Conversely, if a module ID occurs before the FOR keyword, then
a group ID must follow.

OVERLAP
OVERLAP (or OVL) is one of the options available for calculating simi-

larity between columns or rows. The similarity coefficient calculated will
be the sum of the absolute overlaps between columns or rows.

" DSQUARE

DSQUARE is one of the options available for calculating similarity
between columhs or rows. With this option, the similarity coefficient cal-
culated will be the sum of the squared deviations between columns or rows.

CLUSTER

D

D is one of the options available for calculating similarity between
columns or rows. With this option, the similarity coefficient calculated
will be the sum of the deviations between columns or rows.

BINARY

BINARY is one of the options available for calculating similarity
between columns or rows. The similarity coefficient calculated will be a
function of the response - nonresponse profile agreement between columns or
rows on the database. .

MAXIMIZE

Specifying the MAXIMIZE keyword instructs the system to cluster most
similar columns or rows first.

ID

Any valid CODAPS0 ID supplied by the user to be associated with the HSN
values generatad for the clustered rows or columns.

REMARK

This is a string of up to 240 characters enclosed in single quotes.
The remark will be associated with the user specified ID. A remark must be
associated with the added row or column.

MINMEM ASSIGNMENT OPERATOR CONSTANT

The user must specify the minimum membership for the diagram starter
groups. A valid example would be "MINMEM=10". A value less than 2 will
produce an error.

HRADING

The keyword HEADING indicates that the following text string enclosed
in quotes is to be used as a report title.
CHARACTER STRING

Up to 10 lines of 131 characters each may comprise the title character
string.

PERRIOD
A period ('.') must end the CLUSTER statement.

.

s 59
3
‘t "";&' A e e ey ﬂfrww}’%. Vi z;‘\ . . n g
o . P EAS IR NN Ny i o o - N
A e s e e e s S o et

—— - M*__“ ‘ Tk ST

CLUSTER

CLUSTER EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATA80 EXECUTE.

SELECT ROWS EQUIPMENT (TRACTOR JACKHAMMER BULLDOZER
POWERWENCH) 'EQUIPMENT OPERATED'.

CLUSTER COLUMNS INCUMBENTS FOR EQUIPMENT
BINARY MAXIMIZE .
INCHSN 'HSN—CLUSTERING INCUMBENTS FOR EQUIP--BINARY'
MINMEM=2
HEADING='CLUSTERING INCUMBENTS FOR EQUIPMENT'.

END.

The CODAP80 syntax in example 1 of CLUSTER is requesting that a module
of created database rows (see ADDATA example 2) be selected. Following
that, the CLUSTER command will perform a hierarchical clustering on the
incumbent columns of the database, with the similarity between incumbents
being a function of their performance-nonperformance profile (BINARY) on the
equipment rows identified by the created module EQUIPMENT. The diagram
produced will have a minimum starter group membership of 2. Had a "PRTVAR"

report been desired, the user need only to specify a PRINT command sorting
on the ID INCHSN.

EXAMPLE 2

BEGIN SAMPLEDATAS80 EXECUTE.
CLUSTER ROWS TASKS FOR INCUMBENTS
BINARY MAXIMIZE
TASKHSN 'TASK HSN - BINARY OVERLAP'
MINME M=2
HEADING=
'CLUSTERING TASKS FOR SYSTEM COLUMNS - BINARY OVERLAP'.
END.

The above syntax is requesting that all the task rows of the database
be clustered with the overlap between task rows being measured across all
the incumbents as a function of their performance-nonperformance response
profile (binary overlap). A new column of HSN values (named TASKHSN) will
be generated for the clustered task rows. The diagram produced will have a
minimum starter group membership of 2.

80

.,

nd
. 1

e)

it g gl 19 A‘F,{“.‘:
et ;
5 Ve)

v

kil

CLUSTER

- O -

PRINTED OUTPUT

EXAMPLE 2

o

oS A

g

w
E
-y .M.%
o j
e
w&”wﬁ
€ Y 1 € v l ®rI9r <6086 ¢ | 4 ' v ¢
< z t z t 1S9C°0C SHIZ0r ¢+ & v i € ! 1
y o o0 0 ' € 0000°0¢ 0000°0S ¢ € z € z
z 0. 0 0 ' 1 £CCCC8 €LgEc8 Tz | z 1 |
INIOI OL wWOMd 39VIS SUEBM IN3GI NIMAIR N3IMI38 0L MOMJ SHIBN INIOI 39VLS
ININOIS v WN JOVHIAY 3N3INdIS ‘ON JdnowS
SANOWD N IN1EM0D A8 OIRI0S dNOW INVIINSIY |
VIIN0 AUWNIG -- SNWNI00 WILSAS ¥DJ SNSVL SNIWILSNTD i
OBVLY(IMVS - OI AONIS : .
] x
. r
A Coo
- L
Lot e
8 o s
= — - i
- 5

]
i
CLUSTER
EXAMPLE 2 -4
PRINTED OUTPUT (continued) ,
STUDY 1D - SAMPLEDATA80
CLUSTERING TASKS FOR SYSTEM COLUMNS -- BINARY OVERLAP °
MINMEM= 2)
12 22
1-2 34
a3, 83, 50. 50.
34
1=4
48, %4,
45
1-5
33, 46,
?
]
!
. 82 :
o %’4}*“’3\,““;\”“‘(?‘4’5. ‘._:?'}‘T&"’%’i’?“l‘]*ﬁ A‘”ﬁ-"ﬁ"";ﬁ"l.’"“ AT 4

CLUSTER

oNuLs HOLVHIO | l.all
HALOVHVIHO ANNOIEEY

ANVISNOD

SOMIT

y31M

63

v e -....,”‘:h oo - oy
ot ST -

1
g
-,
A7 F A
N

4

CcoPY 5 1

INTRODUCTION

PURPOSE

The COPY command copies any number of specified rows or columns on the
database to a punch or tape/disk output file.

FORM
The general form of the COPY command is as follows:

1) The procedure keyword COPY.
2) The keyword ROWS or COLUMNS - this keyword alerts the
system that either rows or columns of the database are to
be copied.
” 3) A description of which rows or columns on the database
are to be copied (the MROWLT or GCOLST designation).
4) A group or module designation representing the "length"
or the number of elements that are contained in the
row(s) or column(s) that is being copied. ,
5) An indication of whether or not an identifier is to be)
punched in columns 1-12 of the output punch record.
6) An indication of whether the rows(s) or columns(s) are to
be copied to a punch or tape/disk output file.

g

EXAMPLE
COPY ROWS (HVARS) FOR G5 'HVARS -- G5' CARD.

The above COPY command syntax is requesting that the rows identified by
the system module HVARS (H1-H4) be copied to a punch file. Only 4 elements
of each row are ‘n be copied due to the G5 system group identifier appearing
after the FOR keyword (G5 is a system group generated by clustering at data-
base creation time. G5 contains 4 members: [4-17). The character string
HVARS -- G5 is to be punched in columns 1-12 of every 80 character output

, record.

OUTPUT FROM PROCEDURE

, Output from the COPY procedure consists of 80 character records (card
images) sent to the punch or tape/disk logical unit. The number of records
output by COPY is determined by the number and length of rows or columns
being copied.

-

64

N

COPY
COPY SYNTAX
Refer to the syntax graph of the COPY procedure.

COPY . ' -
The keyword COPY identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates whether rows or columns of the
the database are to be copied.

MODULE ROW LIST

A Module Row List (MROWLT) is a list of at least one module or row ID
enclosed in parentheses. Lists of module IDs, system row lists and lists of
row IDs may all occur together in a MROWLT. If the data type designation
following the COPY command keyword is ROWS, then a MROWLT must follow. The
MROWLT serves to indicate to the COPY procedure which rows of the database
are to be copied.

GROUP COLUMN LIST

A Group Column List (GCOLST) is a list of at least one group or column
ID enclosed in parentheses. Lists of group IDs, system column lists, system
group lists and lists of column IDs may all occur together in a GCOLST. If
the data type designation fallowing the COPY command keyword is COLUMNS,
then a GCOLST must follow. The GCOLST serves to indicate to the COPY
procedure which columns of the database are to be copied.

FOR

The FOR keyword alerts the COPY procedure to expect a following group
or module ID.

GROUP ID

A group 1D is an identified aggregate of database columns. A group ID
foliowing the FOR keyword indicates the number of elements comprising, or
length of, the row or rows being copied. If the preceding data type
designation was ROWS, then a group ID must follow the FOR keyword.

85

COPY

MODULE ID }

A module ID is an identified aggregate of database rows. A module ID
following the FOR keyword indicates the number of elements comprising., or
length of, the column or columns being copied. If the preceding data type
designation was COLUMNS, then a module ID must follow the FOR keyword.

CHARACTER STRING

This is a string of up to 12 characters, enclosed in single quotes.
The characters appearing between the single quotes will be punched in
columns 1-12 of every record output by the COPY procedure. If a character
string is not specified, then the system defaults to placing blanks in the
first 12 columns of the output record.

CARD OR TAPE

If the keyword CARD appears in COPY's syntax, the specified row(s) or
column(s) are to be copied to a punch logical unit. If TAPE appears, the
copied row(s) or column(s) will be sent to a tape or disk logical unit.

PERIOD

A period ('.') must end the COPY statement. o

. T —

86

s 3 v il s g et @i B e - b a4 . R
Vo aa rt o verd el B Wr ,;- 5,{,5"“4“:'5‘31"_.*",' <im S gﬁf’\d' & A 2o ot ok, o niniand " ‘;é\xm?

. g,

COPY
COPY EXAMPLES

EXAMPLE 1
COPY ROWS (H2-H4) FOR INCUMBENTS 'H2-H4 INCS.' CARD..

The above COPY statement syntax is requesting that each of the rows
specified in the MROWLT (H2-H4), each of length seven (one element in the
row for every incumbent in the database), be copied to a punch file. The
identifier H2-H4 INCS. is to be punched in columns 1-12 of each record
cutput from the execution of the above COPY procedure syntax.

Referring to the Sample Database, the data to be copied consists of the rows
H2, H3 and H4, each row having one element for each incumbent:
L I2 I3 M 15 18 I7
H2 19 23 . 41 27 53 .
H3 1 2 11 19 3 30 18
H4 1 5 7 2 4 6 3

Referring to example 1 of COPY's punched output, it can be seen that the
three rows have been copied to a punch file in the following configuration:

The first record (or card image) appearing with the punched deck of rows
will always be a header record. The header record will have the following
information punched on it: ’

CARD INFORMATION
COLUMNS PUNCHED
1-12 - The text of the character string that was supplied in
the syntax of the COPY command; H2-H4 INCS. in this
example.
16 - 28 - The text string HEADER RECORD. This text string

serves only to help differentiate the header record
from the data records.

32 - 43 The study ID. In this example, SAMPLEDATASO.

46 - 50 Number of rows/columns copied. In this example, 3.

51 - 58 Number of elements (or length) of each row/column
_copied. In ihis example, 7.

56 - 60 Number of records (or card images) output for each
row/column copied. In this example, 2.

61 - 65 Total number of records (or card images) output in

oopying the rows/columns. In this example, 8.

87

corPY

71 -171 The text R or C, depending on whether it was rows or i
columns that were copied. In this example, R.

The records fallowing the header record contain the rows that were copied.
The data records after the header record have the following configuration:

.
.

CARD INFORMATION
COLUMNS PUNCHRD

1-12 The text of the character string that was supplied in
the syntax of the COPY command; H2-H4 INCS. in this
example.

13 - 72 This fijeld will contain up to 5 values of a
row/column, punched jn E format E12.5. Missing values
will appear as -0.10000E+51. If the row/column is
longer than 5 elements, it will be continued on to the
next record in columns 13-72.

73 - 13 The alphabetic character R or C, depending on if the
values being punched on the record are rows or
columns.

74 - 76 Row/Column sequence number. In example 1, row H2 was
the first row copied. It required two data records of .
output to copy row H2. Since H2 was the first row)
copied, the number 1 will appear in columns 74-76 of
the first two data records output.

77 - 80 Row/ Column record sequence number. In example 1, row
H2 required two output records to copy its full length
(7). To indicate this, a 1 and than a 2 are punched
as sequence numbers in columns 77-80 of output data
records 1 and 2.

EXAMPLE 1
COPIED OUTPUT

CARD
=== COLUMNS

1 2 3 4 5 [7 8
~=> 12345678901234 5678901234 5678901234 5678901234 5678901234 5678901234 5678901234 567890

H2-H4 INCS, HEADER RECORD SAMPLEDATAB0 3 7 2 6 R
. H2-H4 MNCS, 0, 19000E+02 0.23000E+02-0, 10000E+5] 0,41000E+02 0,27000E+02R
' H2-H4 INCS, 0, 33000€+02-0, 10000E+51 R

H2-H4 INCS, 0O, 10000€+01 0,20000€+01 0,11000E+02 0, 19000E+02 0,30000€+01R
H2-H4 INCS, 0,20000E+02 0, !6000E+02 R
H2-H4 INCS, 0,10000€+0% O.50000£+01 0,70000E+01 0,20000E+01 0,40000E+01R
H2-H4 INCS, 0, 60000€+01 0,30000E+01 R

WUINN -
N =N =N -

68 - |

COPY

] EXAMPLE 2

BEGIN SAMPLEDATAS80 EXECUTE.
COPY COLUMNS (G2) FOR TASKS 'G2 TASKS' TAPE.
END.

The above CODAPS0 syntax represents a complete run stream. The COPY
statement is requesting that the database columns identified by the system
cluster group ID G2 (which are, referring to the Sample Database, [4 and I5)
be copied to a tape/disk file. Each of the copied columns will be five
elements long (one for each row identified oy the system reserved keyword

. TASKS). The character string G2 TASKS will be placed in columns 1-12 of
each column output record.

‘ : EXAMPLE 2 ' - C o .
COPIED OUTPUT

CARD
=== COLUMNS

1 2 3 4 5 6 7 8
-=> 12343678901234567890123456789012345678901234567890123456789012345678901234367890

G2 TASKS HEADER RECORD SAMPLEDATAS0 2 b1 1 2 c
G2 TASKS 0, 11111E+02 0.44444E+02~0, 10000E+51 0,22222E4+02 0,22222E+02C 1 1
(G2 TASKS 0.23929€+402 0,23529€E+02 0, 17647E+02-0, 10000E+51 0,35294E+02C 2 1
EXAMPLE 3

BEGIN SAMPLEDATA80 EXECUTE.
COPY ROWS (HVARS S1) FOR G4 TAPE.
END.

The above COPY syntax is requesting that the rows identified in the
MROWLT (HVARS, which consists of the rows H1-H4, plus the row S1) be copied
to a tape/disk file. Each of these rows will be G4 elements long (G4 is a
system cluster group identifying the database columns I1, I2 and 13). Since
a character string was not specified, columns 1-12 of each row output record
will be blank.

EXAMPLE 3
COPIED OUTPUT

CARD
== COLUMNS

1 2 3 4 S 6 7 8
—> 12345678901234567890123456789012345678901234567890123456739012345678901234567890

MEADER RECORD SAMPLEDATASO] 3 1] R : s
0.20000€+01 0, 10000E+01 0,20000€+01 R 1 1 §
- 0, 190006402 0, 23000€+02-0, 10000E+31 R 2 1 4
0, 100006401 0,200008+01 0. 11000€+02 R 3 1
0, 10000€+01 0, 30000E+01 O, 70000£+01 : ; : :

d . <0, 10000+31=0, 10000€+31-0, 10000E+31 ;

69

’ PR s e e m——— e -

— - - - . - ~
Y

. : D R - ., : B
| et i o ot B v G, oy SRR v R A e e v

_ copY

i

GROUP
]
MODULE,
]

LR—

MODIRE
ROW
(Y14

GROUP

COoLUMN
usy

TER

70

s o n ¢

CORR
. CORR

INTRODUCTION

PURPOSE

f The CORR command calculates Pearson product-moment correlations of
specified rows or columns of the database.

i FORM
The general form of the CORR command is as follows:

1) The procedure keyword CORR.

2) The keyword ROWS or COLUMNS - this keyword alerts the
system that either rows or columns of the database are to
be correlated.

3) A description of which rows or columns of the database
are to be correlated.

4) A group or module designation representing the number of
observations in the ocorrelation.

5) A description of what is to be printed as a title at the
top of the produced report.

EXAMPLE

CORR ROWS (H1, H2, H3) FOR Gé)
HEADING:='EXAMPLE CORRELATION SETUP.

The above CORR command syntax is requesting that the rows Hl, H2, H3
be correlated across the columns identified by the cluster group ID Gé
(which is, referring to the sample database, all of the incumbents).

OUTPUT FROM PROCEDURE

Printed output generated from execution of the CORR command consists of
a matrix of Pearson Product-Moment correlations of those rows or columns
specified in the CORR command's syntax. Printed below each correlation will
' be the number of pairs of observations that went into the correlation. If
the keyword NOREMARKS is not specified, the remarks associated with the rows
or columns being correlated will be printed at the beginning of the output.

7

T s AT s A

P

CORR

CORR SYNTAX) \

Refer to the syntax graph of the CORR procedure.

CORR
The keyword CORR identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates whether rows or columns of the
database are to be correlated.
MODULE ROW LIST

A Module Row List (MROWLT) is a list of at least one module or row ID
' enclosed in parentheses. Lists of module IDs, system row lists and lists of

row [IDs may all occur together in a MROWLT. If the data type designation
following the CORR command keyword is ROWS, then a MROWLT must follow. The
MROWLT serves to indicate to the CORR procedure which rows of the database
are to be correlated.

GROUP COLUMN LIST

A Group Column List (GCOLST) is a list of at least one group or column
ID enclosed in parentheses. Lists of group IDs, system column lists and
lists of column IDs may all occur together in a GCOLST. If the data type
designation following the CORR command keyword is COLUMNS, then a GCOLST
must follow. The GCOLST serves to indicate to the CORR procedure which
columns of the database are to be correlated.

FOR

The FOR keyword alerts the CORR procedure to expect a following group
or module ID.
GROUP ID

' - following the FOR keyword indicates the columns of the database the rows are
to be correlated across. If the preceeding data type designation was ROWS,

1
1
A group ID is an identified aggregate of database columns. A group ID \
\
than a group ID must follow the FOR keyword. |

i
. {
72 t

K Vol
S A

CORR

. MODULE ID 1

A module ID is an identified aggregate of database rows. A module ID
following the FOR keyword indicates the rows of the database the columns are
to be correlated across. If the preceeding data type designation was
COLUMNS, then a module ID must follow the-FOR keyword.

PEARSON 4

The keyword PEARSON indicates that Pearson product moment correlations
are to be calculated. This keyword is optional and need not be specified.

i NOREMARKS

Specifying NOREMARKS indicates that the comments associated with the
rows or columns that are being correlated are not to be printed at the
beginning of the CORR procedure's output. If this keyword is omitted,
variable comments will be printed.

HEADING

The keyword HEADING serves to indicate that the following string is to
{ be used as a report title.

ASSIGNMENT OPERATOR

Either the bols '= or '":='. Either of these symbols may be used to
separate the HEADING keyword from the title character string.

CHARACTER STRING

Up to 10 lines of 131 characters each may comprise the character
string(s) that make up the report title of the CORR command. Each title
line of up to 131 characters is enclosed in single quotes, with the
beginning of a new title line indicated by a blank and ancther line enclosed

. : in single quotes.

PERIOD

A period ('.') must end the CORR statement.

ki AR S T

73

, e e ..n..,’,.. e e 4 s ———— e S e m—————— s e e e - - . P - , A

s
/

A egeaa crEamaties pmd

P sw e N) [Y

CORR

CORR EXAMPLES L 1
EXAMPLE 1
CORR ROWS (H1,H2,H3) FOR INCUMBENTS
HEADIN G :=EXAMPLE 1'
'CORRELATION MATRIX OF ROW VARIABLES H1, H2, & H3'
'ACROSS ALL INCUMBENTS'.]

The above CORR statement syntax is requesting that the rows Hl, H2 and
H3 be correlated across all incumbents in the database (the group ID
INCUMBENTS is a CODAP80 reserved keyword).

s ' EXAMPLE 1 . .
' PRINTED OUTPUT ,
PAGE - 1

STUDY ID - SAMPLEDATAS0
EXAMPLE 1
CORRELATION MATRIX OF ROW VARIABLES Hl, H2 & H3
ACROSS ALL INCUMBENTS

ROW/COLUMN ID ROW/COLUMN REMARK 3
H-1 - ' SEX
H-2 AGE
H-3 . YEAR ON JOB
PAGE - 2

STUDY ID - SAMPLEDATAS0
CORRELATION COEFFICIENTS/NUMBER OF OBSERVATIONS |
EXAMPLE 1
CORRELATION MATRIX OF ROW VARIABLES Hl, H2 & H3
! ACROSS ALL INCUMBENTS

H-1 H -2 H-13
H-1 - 1,00000 '=0.53921 =0.36364
7 5 7
H-2 -0.53921 1.00000 0.98915
: L] S] N i
H-3 -0.368364 -0.98915 1.00000
7) 7
74
' ! 7
tlv R R IE ERRRTIR .”».?:s- " .gﬁc,yi-;ﬁ;&ifﬁétswkg ' iﬂﬂmfm"”fr%*' WhMvaxq D
A £ SN S R R I RN

CORR

EXAMPLE 2

CORR COLUMNS (G4) FOR TASKS PEARSON NOREMARKS
HEADING:='EXAMPLE 2'
'CORRELATION MATRIX OF COLUMNS CONTAINED m'
'CLUSTER GROUP 4 (G4) — 11, 12, & I3 .
) 'CALCULATED ACROSS ALL TASKS'.

The above CORR statement syntax is requesting that the columns
identified by the cluster group ID G4 (I1, 12, & I3) be correlated across
all tasks in the study (the module ID TASKS is a CODAPS0 reserved keyword).
The keyword NOREMARKS has been specified.

EXAMPLE 2
PRINTED OUTPUT

PAGE - 1

STUDY ID ~ SAMPLEDATAS80
CORRELATION COEFFICIENTS/NUMBER OF OBSERVATIONS
EXAMPLE 2
CORRELATION MATRIX OF COLUMNS CONTAINED IN
CLUSTER GROUP 4 (G4) -~ 11, 12, &« I3
CALCULATED ACROSS ALL TASKS

I-1 . I-2 I-3

I1-1 1.00000 0.00410 -0.42675
5 .5 5

1-2 0.00410 1.00000 0.67732
)] 5

-3 -0.42675 0.67732 1.00000
5 5 7

B8 CAyRS RS VO

MODWLE

385

GROUP
COLUMN
usY

CORR

masn W

78

idi e b AR R s LS

— T —

Lo

PURPOSE

The CREATE procedure is used to generate new rows or columns on the
database. The new rows or columns are calculated from exiating information

CREATE

INTRODUCTION

that resides on the database.

FORM

The general form of the CREATE procedure is as follows:

1)
2)
3)
4

5)
6)

EXAMPLE

The procedure keyword CREATE.

A keyword ROW or COLUMN designating what is to be
created.

A group or module designation indicating the "length" or
number of observations the created row or column will
have.

A designation of the mathematical relationship between
the new row or column being created and previously exist-
ing rows or columns.

An indication of whether the created data is to
permanently reside on the database.

A remark followed by either a period or semicolon.

BEGIN SAMPLEDATA80 EXECUTE.
CREATE ROW FOR INCUMBENTS
MTHS_ON _JOB = H3/12 'NUMBER OF MONTHS ON JOB'.

END.

The above CREATE syntax will calculate, for every incumbent on the
database, the number of years they've been on the job (H3,
Database) divided by 12.

permanently saved on the database.

OUTPUT FORM PROCEDURR

Execution of the CREATE procedure produces no printed output.

result of its execution, the CREATE procedure will optionally save a new row

or column on the database.

17

see Sample
The new row will be named MTHS_ON JOB and will be

R T I LN

RN A . - . ‘ . ‘ AS 3
AR e e Me L - . .
B AL T HR S] S JURRY 3‘”‘ ROV oy ¥ ki
L . : e i o

CREATE
CREATE SYNTAX
Refer to the syntax graph of the CREATE procedure.

~CREATE

The keyword CREATE identifies the procedure.

DATA TYPE DESIGNATION

The keyword ROW or COLUMN indicates whether a row or column is to be
, created.

FOR

The FOR keyword alerts the CREATE procedure to expect a following group
or module ID.

GROUP ID

A group ID is a defined aggregate of database columns. If the data
type designation preceding the FOR keyword was ROW, then a group ID must
follow. The group ID serves to indicate ‘the "length” or number of elements
the created row will have.

MCODULE ID

A module ID is a defined aggregate of database rows. If the data type
designation preceding the FOR keyword was COLUMN, then a module ID must
follow. The module ID serves to indicate the "length"” or number of elements
the created column will have.

FULL ASSIGNMENT CLAUSE

A full assignment clause defines the mathematical relationship between
existing data to be used in creating a new row or column. Data types may
not pe mixed; that is, if a row is being created then the existing data must
be rows also. Relationships may be defined through the use of IF-THEN-ELSE
constructs (see CREATE examples 4 & 5) or arithmetic expressions (see CREATE
examples 1, 2, & 3). Acceptable arithmetic operators are addition (+), sub-
traction (~), division (/), multiplication (*) and exponentiation (**).

NOSAVE
Specification of the optional keyword NOSAVE indicates that the created
row or column is to exist only for the duration of the current computer

run.

78

i
1
.
i

CREATE

REMARK

A remark is a string of up to 240 characters, enclosed in single
quotes. The remark, which must appear, will be associated with the new ID
that was generated in the full assignment clause.

PERIOD OR SEMICOLON
A period must end the syntax of the CREATE procedure. If syntax is
terminated with a semicolon, specification of another series of CREATE syn-

tax may begin without having to repeat the procedure keyword (see CREATE
example 3). :

79

fe eisma

E I N
-

-

CREATE
CREATE EXAMPLES

EXAMPLE 1

-BEGIN SAMPLEDATAS80 EXECUTE: "
CREATE ROW FOR INCUMBENTS
H2 SQUARED = H2**2 'AGE SQUARED'.
PRINT COLUMNS (INCUMBENTS) NOREMARKS/
ROWS (H2 42 SQUARED) .
HEADING = 'PRINT OF AGE & AGE**2'.
END.

The CREATE procedure syntax in example 1 will result in a new row
(named H2_SQUARED) being permanently added to the database. The new row
will be 7 elements long (1 for each incumbent). The relevant calculations
are displayed below:

Il 12 n 14 I5 I8 n
H2 19 23 N a1 27 53 N
H2_SQUARED 361 529 . 1681 729 2809 .

The PRINT procedure syntax would produce a printed listing of the data
values just processed by the CREATE procedure.

EXAMPLE 2

BEGIN SAMPLEDATAS80 EXECUTE.
DESCRIBE ROWS TASKS FOR (MALES FEMALES)
PCNTPERF = PCNT '$ PERFORMING TASKS'.
CREATE COLUMN FOR TASKS
DIFFPERF = PCNTPERFL - PCNTPERF2
'DIFFERENCE IN § PERFORMING TASKS - SEX'.
END.

The DESCRIBE procedure in the above run sequence is "describing” the
tasks of the male and female incumbents in the database. It is assumed that
the group IDs MALES and FEMALES were selected and saved during an earlier
run stream (see SELECT example 2). Two columns (named PCNTPERF1 and
PCNTPERF2) will be created from the execution of the DESCRIBE syntax. The
CREATE procedure is then calculating the difference between the two columns
and generating the result as a column named DIFFPERF. The column DIFFPERF

will have 5 elements (1 per task). The syntax appearing in example 2 is

often used as an intermediate step in the generation of a group difference
description. The relevant calculations of example 2 appear below: .

PCNTPERF1 PCNTPERF2 DIFFPERF

Tl L] . .

T2 100.00 50.00 50.00
T3 80.00 100.00 -40.00
T4 40.00 100.00 -60.00
TS 40.00 50.00 -10.00

80

-

~

{l";“‘x' "'(”.“1{ ?;Nn \ ﬁ" 15 Kig b 5‘

%

i
¢
¥

= P xr-.,:: A

CREATE

EXAMPLE 3

BEGIN SAMPLEDATA80 EXECUTE.

INPUT COLUMN FOR TASKS
TASKDIFF 'TASK DIFFICULTY'

. FORMAT '(5F1.0)'.

CREATE COLUMN FOR TASKS
TASKDIFF10 = TASKDIFF + 10
'TASK DIFFICULTY PLUS 10%;

COLUMN FOR TASKS
IIWEIGHTED = I1 * TASKDIFF10
'INCUMBENT 1 WEIGHTED BY TASKDIFF10',
END.
15296

The INPUT syntax in example 3 is requesting that a column be added to
the database. The column will consist of task difficulty indices and will
be named TASKDIFF (the values to be added appear directly after the END
statement). The CREATE syntax immediately following the INPUT procedure
will add 10 to every value of TASKDIFF and in so doing generate a column
named TASKDIFF10. Column TASKDIFF10 will then be used in the next execu-
tion of the CREATE procedure (without having to repeat the procedure key-
word due to the trailing semicolon) to weight the values in column I1,
resulting in another column named IIWEIGHTED. Relevant statistics appear
below:

I1 TASKDIFF TASKDIFF10 I1WEIGHTED
T1 Lr} 1 11 704
T2 9 5 15 135
T3 9 2 12 108
T4 18 9 19 342
TS5 0 6 16 .

EXAMPLE 4

BEGIN SAMPLEDATAS80 EXECUTE.

CREATE ROW FOR G6
IF T1=0 THEN NEWROW = 1 ELSE NEWROW = T1*2
'ROW BASED ON T1'.

END.

The CREATE syntax in example 4 illustrates the use of an IF-THEN-ELSE
construct in a full assignment clause. The result of the syntax is to
‘create a new row (named NEWROW) that will have an element for every incum-
bent on the database (as indicated by the system cluster group G6). If the
corresponding value of Tl is zero, then NEWROW will equal 1. If the value
of T1 is anything other than zero, then NEWROW will equal T1 multiplied by
2. Relevant calculations appear below:

11 12 13 16 17

14 IS
TL. 8 T T T W W I
NEWROW 128 22 1 22 48 72 1

e o

4 CREATE

EXAMPLE 5 >

BEGIN SAMPLEDATA80 EXECUTE.
CREATE ROW FOR INCUMELNTS
IF H3 > 30 THEN TIME_LEVEL
IF H3 > 20 THEN TIME_LEVEL = 3
IF H3 > 10 THEN TIME_LEVEL = 2
ELSE TIME_LEVEL = 1 NOSAVE

'1=1-10 YEARS; 2=11-20; 3=21-30; 4=>30".

‘ VARSUM ROWS (TIME LEVEL) FOR (INCUMBENTS)
COUNT PERCENT

+HEADING = 'DISTRIBUTION OF TIME LEVEL'.
END.

4

' The CREATE syntax in example 5 is illustrating the means by which
! . values representing intervals may be generated. The effect of the syntax is
to create 8 new row (named TIME_LEVEL) with a value for every incumbent.
The appearance of the NOSAVE keyword indjcates that TIME LEVEL will exist

‘ only for the duration of the job. The VARSUM procedure will generate a
report displaying the distribution of TIME_LEVEL across all incumbents.
‘ Relevant statistics appear below:
U N - RS TN - N (R 4
H3 1 2 11 19 3 30 16
TIME_LEVEL 1 1 2 2 1 3 2

[«
ot

F _ CREATE

NOSAVE

=
sy)

7 '

e < o b e e o

a ey g ki T

T TP DIEA T

-

}L';’l'k"(i ?‘:'_iq.' . ‘v'.f_‘;-_gﬁ'g‘j’#.

o

| DESCRIBE o

INTRODUCTION
PURPOSE

The DESCRIBE procedure will compute statistics on any specified
aggregate of database rows or columns (a module or group) measured across
one or more specified aggregates of database columns or rows (a group or
module list). In particular, DESCRIBE may be used to generate statistical
summarizations (such as percent performing, average, etc.) of incumbent

’ responges to historical, task or secondary questions.

In addition to DESCRIBE's ability to calculate statistics on database
‘ rows measured across columns (the usual type of processing when generating :
i occupational job descriptions), the procedure may also be used to "describe”
‘ database columns measured across rows. This capability gives DESCRIBE the

feature of symmetry, in that any processing performed on rows across columns
may also be performed on columns across rows.

FORM
The general form of the DESCRIBE command is as follows: !

1) The procedure keyword DESCRIBE.

2) The keyword ROWS or COLUMNS - this keyword alerts the .
system that either rows or columns of the database are to :
be "described".

3) An indication of which rows (in the form of a module ID)
or columns (in the form of a group ID) of the database
are to be "described”.)

4) A description of at least one column or row aggregate
(specified in the form of a group or module list) across
which row or column statistics are to be calculated. :

5) A new ID. The new ID will have a numeric value, ranging i
from 1 to the number of group or module IDs specified in '

' 4, appended to it by the system. If only one column or
row aggregate (a group or module ID) is specified in 4,
then a numeric value is not appended to the new ID.

6) One of the statistical functions: AVGP, AVGA, STDP, .

STDA, PCNT, SUM or N. The function speciﬂcd defines the i
' type of statistic DESCRIBE will compute on the rows or o
oolumns specified in 3.

7) Optionally, the keyword NOSAVE.

8) Descriptive text (a remark) supplied by the user that
will be be aasociated with the new column or row IDs ;

. added to the databese. '
' 9) A period or a semicolon. Spociﬂcation of a period ends -
. the DESCRIBE command. If, instead, a semicolon is speci- ‘)
. i fled, & different statistical. function may be defined for
the same database subset by repeating 3-9. | t

X 84

e

AR

0 W’-‘jﬁ'mﬁ“f o x A '-u."“ TR "”ﬂp{*wﬁm- ;

i T ——
e e R a0
R VRV,
e el T gL Wbl T 4 Dt L Tt
—_ R PR SR o S ;
N e i ; ae e I

S e o S

DESCRIBE

{ EXAMPLE
DESCRIBE ROWS TASKS FOR (INCUMBENTS)
INCNUM := N

'NUMBER RESPONDING TO TASKS -- ACROSS INCUMBENTS'.

The above DESCRIBE command syntax will calculate, for every task row

(as defined by the CODAP80 system module TASKS), the number of non-zero

responses across all incumbent columns in the database (as defined by the

CODAPS80 system group INCUMBENTS). The sameeffect would have beenachieved

had the user specified the system cluster group G6. Resulting from the

' execution of the above syntax, a column, five elements long (one per task)

and containing the number of non-zero responses to each of the task rows

acroas incumbents, will be permanently saved on the database. The column

will be assigned the ID INCNUM as well as the descriptive remark NUMBER
RESPONDING TO TASKS -- ACROSS INCUMBENTS for future reference.

OUTPUT FROM PROCEDURE |

Execution of the DESCRIBE procedure produces no printed output. For
» every aggregate of database columns or rows (groups or modules) specified in

the group or module list (which defines that part of the database across
which calculations are to be performed), DESCRIBE will add a new column or
row to the database. A listing of the new created row or column may be
produced by appropriately referencing the ID in the syntax of the PRINT
procedure (see example 3 of PRINT).

ATV A

!

i SR . " -

e, o

} 1 DESCRIBE

DESCRIBE SYNTAX z
Refer to the syntax graph of the DESCRIBE procedure.

DESCRIBE
The keyword DESCRIBE identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates to the system whether it is tc be
rows or columns of the database that are to be "described”.

MODULE ID
! ' A module ID is an identified aggregate of database rows. If the
preceding data type designation was ROWS, then a module ID must follow. The

module ID may be one previously defined through the use of the SELECT
procedure, or may beone of the CODAP80 system modules HVARS, TVARS, TASKS
or SVARS. The module ID specification serves to identify to the DESCRIBE
procedure the database rows upon which statistics are to be calculated. ‘

. GROUP ID

A group ID is an identified aggregate of database columns. If the
preceding data type designation was COLUMNS, then a group ID must follow.
The group ID may be one previously defined through the use of the SELECT
procedure, one of the CODAP80 system cluster groups (as defined at database
creation time by the OGROUP routine) orthe CODAP80 system group INCUMBENTS. -
The group ID specification serves to identify to the DESCRIBE procedure the
database columns upon which statistics are to be calculated.

e e e e s e

G L PN B P

FOR

The FOR keyword alerts the DESCRIBE procedure to expect a following 1
group or module list. i

' GROUP LIST

A group list is a list of at least one group ID enclosed in
parentheses. Created group [Ds (such as wouid be generated by SELECT),
CODAPS0 system group IDs (such as the keywords INCUMBENTS or INCS) and :
: syatem cluster groups (such as G1-G3, as defined by clustering at database i
' creation time) may all appear in a group list. Each group ID specified in o

the group list represents a different aggregate of database columns agross

DESCRIBE

which statistics for a row are to be calculated. If the preceding data type

designation was ROWS, then a group list specification must follow the FOR
keyword.

MODULE LiST

A module list is a list of “at least one module ID enclosed in paren-

theses. Created module IDs (such as would be generated by SELECT) and
CODAPS80 system modules (such as HVARS, TVARS, TASKS and SVARS) may all
appear in a module list. Each module ID specified in the module list repre-
sents a different aggregate of database rows across which statistics for a
column are to be calculated. If the preceding data type designation was
COLUMNS, then a module list specification must follow the FOR keyword.

ID

A user supplied "seed” ID. Any valid CODAP80 ID may be specified. The
new ID will have a numeric value, ranging from 1 to the number of group or
module IDs appearing in the group or module list, appended to it by the
system (unless, of course, only a single aggregate ID appeared in the group
or module list). The user must be careful not to specify an ID that will
conflict with one previously defined in the database. The user must also
take care to specify an ID that, when the numeric value is appended to it by
the system, is not longer than 12 characters.

ASSIGNMENT OPERATOR

Either of the symbols '+ or ':='. Either of these symbols may be used
to separate the seed ID from the statistical function that follows.

STATISTICAL PUNCTIONS

The statistical function specified defines the type of statistical
operation performed by DESCRIBE on the rows or columns associated with the
module or group ID designated in the syntax. The seven acceptable
statistical function keywords are as follows:

AVG@P - Average, excluding missing values.
*AVGA -~ Average, including missing values.

S8TDP - Standard deviation, excluding missing values.
*STDA - Standard deviation, including missing values.
*PCNT -~ Percentage of non-missing values.

SUM - Sum of non-missing values.

*N -

Number of non-missing values.

*{f a calculation is being performed on task rows across incumbent

columns or on incumbent columns across task rows, zeros are interpreted as
missing.

i B AR ok SIS 218 A

e et A

DESCRIBE

NOSAVE

Specification of the optional keyword NOSAVE indicates that any new
rows or columns generated through the execution of the DESCRIBE procedure
are not to be permanently saved for future reference.
REMARK .

This is a string of up to 240 characters, enclosed in single quotes.

The remark will be associated with the new row or coiumn IDs generated. A
remark must be associated with the new IDs.

PERIOD OR SEMICOLON

A period ('.') must end the syntax of the DESCRIBE procedure. If the
user desires to calculate more than one type of statistic on the same
database subset, the command syntax may be terminated with a semicolon,
followed by the specification of a new [D, statistical function and a remark
(see DESCRIBE example 1).

:
;
.
£
 f

DESCRIBE
DESCRIBE EXAMPLES

EXAMPLE 1

DESCRIBE ROWS TASKS FOR (G6)
G6AVGA := AVGA .) -
'AVERAGE (ALL) PER TASK--G6';
GBAVGP := AVGP
'AVERAGE (PERFORMING) PER TASK--G6'.

The above DESCRIBE command syntax will calculate, for each task row on
the dz:abase (as designated by the CODAP80 system module TASKS), the average
including missing values (AVGA) and the average sxcluding missing values
(AVGP) across all the incumbent columns of the database (I1-17, as indicated
by the system cluster group G6). Execution of the aboveé syntax will resuit
in two columns (named G6AVGA and G6AVGP), each five elements long (one per
task), being permanently added to the database. The remark AVERAGE (ALL)
PER TASK--G6 will be associated with the new created column G6AVGA and the
remark AVERAGE (PERFORMING) PERTASK--G8 will beassociated with the second
created column GE6AVGP.

The values that will be calculated for the two created columns are as
follows (see Sample Database):

GEAVGA (1) = _(64+11+0+11+24+36+0)/7 = 20.86

GBAVGA (2) = (9+11+0+44+24+64+43)/7 = 27.86
GEAVGA (3) = (9+22+20+0+18+0+57)/7 = 18.00
GBAVGA (4) = (18+56+50+22+0+0+0)/7 = 20.86
G6AVGA (5) = (0+0+30+22+35+0+0)/7 = 12.43
GGAVGP (1) = (64+11+11+24+36)/5 = 29.20
GBAVGP (2) = (9+11+44+24+64+43)/6 = 32.50
GBAVGP (3) = (9+22+20+18+57)/5 = 25.20
GOAVGP (4) = (18+56+50+22)/4 = 36.50
GEGAVGP (5) = (30+22+35)/3 = 29.00

’.

ot e

g

L aiL s

N il

RS

DESCRIBE

EXAMPLE 2

BEGIN SAMPLEDATAS80 EXECUTE.

SELECT ROWS SHAKEDOWN (T2-T3)
'SHAKE DOWN TASK MODULE'.

DESCRIBE ROWS SHAKEDOWN FOR (G2-G4) . N
G2G4PCNT := PCNT " ’
'PERCENT PERFORMING--MODULE SHAKEDOWN--CLUSTERS G2-G4¢'.

END.

The above syntax specification represents a complete run stream in the

CODAPS0 language. The SELECT command is "selecting" two task rows (T2 and

T3) to be in module SHAKEDOWN. The DESCRIBE command syntax will calculate,

for each row defined to be in module SHAKEDOWN, the percentage of

non-missing values (PCNT) across each of the database column aggregates

1 contained in the CODAP80 system cluster groups G2, G3 and G4 (G2--14, I5;
G3--14, I5, 16; G4--I1, I2, 13). Execution of the DESCRIBE syntax will

result in three columns (named G2G4PCNT1, -G2G4PCNT2 and G2G4PCNT3

respectively; the terminating numeral being appended to coincide with the

number of group IDs specified in the group list), each two elements iong

‘ (one for each row defined to be in module SHAXEDOWN), being permanently

added to the database. The remark PERCENT PERFORMING--MODULE
SHAKEDOWN--CLUSTERS G2~G4 will be associated with each of the three created
columns. The values that will be calculated for the three created columns
are as follows:

G2G4PCNT1 G2G4PCNT2 G2G4PCNT3

T2 100.00 100.00 66.67
T3 50.00 33.33 100.00
EXAMPLE 3

DESCRIBE COLUMNS G6 FOR (TASKS)
G6NTASKS := N
'NUMBER OF TASKS RESPONDED FOR EACH INCUMBENT'.

] The above syntax illustrates the DESCRIBE procedure's symmetric
capability. Examples 1 and 2 requested that the procedure "describe" rows
measured across columns. Example 3 is requesting that the procedure

' "describe” columns measured across rows. Specifically, the above DESCRIBE

command syntax will calculate, for every incumbent column on the database

(as designated by the CODAPS80 system cluster group G6), the number of

non-missing values across all the task rows of the database (T1-T5, as

indicated by the CODAP80 system module TASKS). Execution of the syntax in
axample 3 will result in one row being permanently added to the database

(the row will be named G6NTASKS and will be seven elements long).

The values that will be calculated for the created row are as follows:

)
| n 2 B w®# 1 18 00 '
‘ G6NTASKS - 4 4 3 4 4 2 2
|
¢

90 !

e e e 3O gl s ey e Beiin - aan, a R
o z B .‘zr“.,_‘ -..:f‘f-x(WATES S e R g
R I :

e emor

DESCRIBE

|
M

HYO1VH¥3IdO

isn

3Inaon

isn

dNOHO

i

ANINNDIBBY

i

91

- e T

i e g T B i A 5 e -4 R S B 25 "

AD-A144 128 CMPIENENSIVE OCCUPATIONAL DATA ML'SIS PROGRAMS 80 2/'2
(CODAPBO) USER'S MANUAL(U) NAVY OCCUPATIONAL
DEVELOPMENT ANO ANALYSIS CENTER WASHINGTON DC JAN ll
UN(‘LASSIFIED DOD/DF - 84/006A

1

flio

——
———

EEEIE
FE

EF“EEEEEE
=
MN

°

s

i
YT

(o]

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - (963 - 4

TR

D i s

END }

INTRODUCTION

PURPOSE
The purpose of the END command is to delineate the end of a CODAPS0
source language program. The END command occurs only once and is always the
last statement in any CODAP80 source language program.
FORM
The general form of the END statement is as follows:
1) The procedure keyword END.
2) A period ('.").

EXAMPLE

BEGIN SAMPLEDATA80 EXECUTE.
SELECT ROWS ALLSYSROWS (H1-H4, T1-T5, S1-§5)

'ALL. SYSTEM ROWS ON DATABASE'. : g
END. A

The above CODAP80 source language statements represent a complete run
stream that would be submitted to the computer. The example fllustrates the
recommended form and placement of the END command.

OUTPUT FROM PROCEDURE

Execution of the END procedure produces no printed output. The END
procedure is not a procedure in the sense that, say CLUSTER or STANDARD are
procedures. END performs no calculations on values in the database. END
serves only to terminate a CODAPS0 source language program.

END
END SYNTAX

Refer to the syntax graph of the END procedure.

END
The keyword END identifies the command.

PERIOD

A period ('.') must terminate the END command.

2

ey

—r
Sl R s Rl S
! Ay

——w
et o r

T et v it Mo s o e oo
—_— e ~ o

5 -

-

.
. e
: e A

END

END EXAMPLES)

e e A . e

EXAMPLE 1

BEGIN SAMPLEDATAB0 EXECUTE. ‘ :
CORR ROWS +(51-85) ‘for G6 - i
HEADING = 'CORRELATION OF S1-S5' ‘
'ACROSS ALL INCUMBENTS'.
END.

The above source statements represent a complete run stream in the
CODAPS80 language. Example 1 illustrates the recommended form and placement
of the END command.

EXAMPLE 2

BEGIN SAMPLEDATAS80 EXECUTE.
PRINT COLUMNS (G6) NOREMARKS / ROWS (Hl) .
HEADING = 'EXAMPLE OF PRINT'. ’
END i
Example 2 illustrates a common error in the specification of the END k
command. The user has neglected to terminate the END command with a period. :

CODAPS0 will alert the user to this fact by printing the following error)
message: .

UNEXPECTED TERMINATION OF CODAP80 SOURCE PROGRAM FOUND. END
COMMAND MUST BE FOLLOWED BY A PERIOD. i

94

.

T a S Ay : .

T . ! .. N . N

R EA "'.‘ﬂ'.’“@”’ﬁf:i"‘{-"f’ L8 .i:"?rﬁ“it""--"."_Y“ﬂf’?:ﬂ!'};$‘,‘?"me5~}”~%@1@(;ﬁ"ﬁﬁﬁ‘l N
PRI AR AP . ST v i i Ch <

B

END

e

INPUT
INTRODUCTION

PURPOSE

The INPUT procedure adds a new row or column to the database. The
INPUT procedure is very useful for adding information to the database that
was not available when the database was originally created. For example,
suppose you want to classify the incumbents of a study into two categories--
those who have had training and those who have not had training. By adding
a new row consisting of a binary indication of training (1 if they've had
training, and 0 if they have not), statistics may then be calculated across
incumbents as a function of this.

FORM
The general form of the INPUT statement is as follows:

1) The procedure keyword INPUT.

2) A data type designation specifying whether a row or a
column is being added to the database.

3) A designation of the aggregate of database columns the
row is being added for, or a designation of the aggregate
of database base rows the column is being added for.

4) A user supplied valid CODAP80 ID associated with the
added row or column.

5) A user supplied FORTRAN format for reading-in the row or
column values to be added to the database.

6) Options controlling the permanence of the added ID, and
missing value considerations.

EXAMPLE

BEGIN SAMPLEDATA80 EXECUTE.

INPUT ROW FOR G6 TRAINING
'NEW ROW NAMED TRAINING
FORMAT '(7F1.0)'.

END.

1110101

In this example, a new row named TRAINING is being added to the
database. There will be a value of TRAINING for every column associated
with the group ID G6 (I1-17, see Sample Database). The string NEW ROW
NAMED TRAINING, enclosed in single quotes, is the remark to be associated
with the row named TRAINING. The keyword FORMAT signifies that the row ID
TRAINING is to be read with the following format specification (in this
case 7F1.0, indicating that the row ID TRAINING consists of 7 one digit

.

A ‘»‘-"P\,&’.tf‘yﬁ"t ‘%ﬂmx'\'y&lh'-g:-ka'bmr_:‘_'- s
- oL e Rl PRI

INPUT

{' numbers) that is enclosed in single quotes and parentheses. For an
explanation of format specifications (such as 7F1.0) consult any intro-
ductory FORTRAN text.

OUTPUT FROM PROCEDURE
Execution of the INPUT procedure produces no printed output. The

result of executing the INPUT procedure will be a new row or column
: optionally added tc the database.

]

97

peET B . “ . ' .
AR v v“”;&ﬁ "%45}"{”“‘”7‘5 TR %ﬁ.ﬂﬂ'- gy et b e Sy _"W":'V o , Secdi e
B s 23 o t . Lo AR S
s . h 2

— -

. INPUT
INPUT SYNTAX

Refer to the syntax graph of the INPUT procedure.

INPUT
The keyword INPUT identifies the command.

DATA TYPE DESIGNATION

The keyword RCW or COLUMN indicates whether the data being added is a
conceptual row or column of the database.

FOR

The FOR keyword alerts the INPUT procedure to expect a following group
or module ID.

GROUP ID

A group ID is an identified aggregate of database columns. If the
preceding data type designation was ROW, then a group ID must féllow the FOR
keyword. The group ID may be one previously defined through the use of the
SELECT procedure, one of the CODAP80 system cluster groups (as defined at
database creation time by the OGROUP routine) or the CODAP80 system group
INCUMBENTS. The group ID specification serves to indicate to the INPUT
procedure the database columns for which the new row is being added. The
group ID also serves to indicate the "length" or number of elements the
added row will have.

MODULE ID

A module ID is an identified aggregate of database rows. If the
preceding data type designation was COLUMN, then a module ID must follow the
FOR keyword. The module ID may be one previously defined through the use of
the SELECT procedure, or may be one of the CODAP80 system modules HVARS,
TVARS, TASKS or SVARS. The module ID specification serves to indicate to
the INPUT procedure the database rows for which the new column is being
added. The module ID also serves to indicate the "length" or number of
elements the added column will have.

ID

This is any valid CODAP80 ID supplied by the user that will be
associated with the added row or column.

e

- . i’

c . . .
[¥ ;{f;q;‘,yﬁh‘i,’ P Lt TIEP ‘_,%.‘wv: e eplen el e iry

‘ ' INPUT

NOSAVE

Specification of the optional keyword NOSAVE indicates that the added
row or column will exist on the database only for the duration of the
computer run.

REMARK

This is a string of up to 240 characters enclosed in single quotes.
The remark will be associated with the added row or column. A remark must
be associated with the added row or column.

MISSING
ASSIGNMENT OPERATOR
CONSTANT

Some of the elements of the row or column to be added to the database
may be missing (as opposed to being zero or blank). To signal the INPUT
procedure that a given value is missing, choose a unique integer constant as
the identifier in the missing option. For example, suppose the user was
adding a new row to the database, and one of its five elements was missingy
By indicating a unique integer constant in the missing option (let's say
99), the INPUT procedure would then know that any values of 99 that were
input as the new row should be set to missing (see INPUT example 1).

FORMAT

The FORMAT keyword serves to indicate to the INPUT procedure that the
following string enclosed in single quotes is to be used as the input format
for reading-in the values of the row or column to be added.

FORMAT SPECIFICATION

The format specification for the INPUT procedure may be any valid 1966
Ansi Standard FORTRAN format in parentheses, enclosed in single quotes. The
format will be used by the INPUT provedure to read-in the values of the
added row or column. The place in the input stream of a CODAP80 source
language program where the values of the row or column to be added are to
appear is directly after the terminating END statement (see INPUT examples 1
and 2). For an explanation of FORTRAN formats, consult any introductory
FORTRAN text.

PERIOD
A period ('.') must end the INPUT statement.

99

aamme

INPUT

INPUT EXAMPLES _ : 1

EXAMPLE 1

BEGIN SAMPLEDATAS80 EXECUTE. . . .

INPUT ROW FOR G6 RACE .
'RACIAL BACKGROUND OF INCUMBENTS'
MISSING := 9 FORMAT '(7F1.0)'.

END.

1192319

The above syntax represents a complete run stream in the TODAPS80

language. The INPUT syntax is requesting that a new row (to be named RACE)

. be added to the database. The row will have an element for every incumbent

i - column on the database (as defined by the CODAP8) system cluster group G6)

i and will be associated with the remark RACIAL BACKGROUND OF INCUMBENTS.

Two of the seven race values are missing and the syntax is alerting the

INPUT procedure to set to missing any values of the row to be added that

equal 9. The format specification indicates that the added row consists of
seven l-digit numbers.

EXAMPLE 2

BEGIN SAMPLEDATA80 EXECUTE. %
INPUT COLUMN FOR TASKS RANKING)
'TALTERNATE RANKING FOR TASKS'
FORMAT '(5F1.0)'.
END.
21453

The above syntax represents a complete run stream in the CODAPS0
language. The INPUT syntax is requesting that a new column (to be named
RANKING) be added to the database. The new column will have an element for
every task row on the database (as defined by the CODAP80 system module
TASKS) and will beassociated withtheremark ALTERNATE RANKINGFORTASKS. ;
The format specification indicates that the added column consists of five ‘
1-digit numbers.

The rationale for the operation shown in example 2 might be that the
user wishes to see the tasks on a database sorted on some arbitrary
dimension. After the column of rankings was added, the user could then have
the print procedure display the tasks, sorted by the newly added column.

100

INPUT

ANVIENOD

YOLVYH340
(e (]
ININNDISSY

NHvynaIH

—(Co DG

-G

101

.\\

PRINT
INTRODUCTION

PURPOSE

The PRINT procedure displays information that exists in the database.
In addition, various summary statistics are optionally calculated and
dispiayed.

FORM
The general form of the PRINT statement is as follows:

1) The procedure keyword PRINT.

2) A description of which part of the database is being use.
to define the vertical axis.

3) A description of which part of the database is being used
to define the horizontal axis.

4) A description of what is to be printed as a title at the
top of the produced report.

5) Various options that define operations to be performed on
the displayed information and that control the appearance
of the output.

EXAMPLE

PRINT ROWS (TASKS) AVGP / COLUMNS (I1-13)
HEADING := 'EXAMPLE OF PRINT PROCEDURE!'.

This PRINT statement would output tasks as designated by the CODAP80
system module TASKS down the vertical axis (any designation occurring before -
the slash (/) indicates the elements of the vertical axis). The keyword
AVGP specifies that the average (non-missing elements only) is to be
calculated on the elements occurring down the vertical axis. 11-13
specifies that the first three columna of the database are to comprise the
elements of the horizontal axis (any designation occurring after the (/)
indicates the elements of the horizontal axis). The string enclosed in
single quotes following the HEADING keyword indicates what is to be printed
at the top of the page as a title.

OUTPUT FROM PROCEDURE
Execution of the PRINT procedure produces a report displaying the rows

and columns of a database. Exactly which rows and columns are displayed,
and the appearance the output will have, is a function of user input.

102

. LD e 3 N
-"“'-. " LY e ;\..#u_a,h..,'. o EERAY

e et ‘.-wg:} '

A St

PRINT

: CACUTION: The user is warned to display great care when requesting
output from the PRINT procedure. Inadvertent recquests
could conceivably generate a report consisting of
inordinate amounts of paper. .For example, in a study
with 1,000 incumbents, measured on 200 tasks, that had
been clustered, the following PRINT statement would
generate over 350 pages of output:

PRINT ROWS (TASKS) NOREMARKS /
COLUMNS (G999) NOREMARKS MISSING
HEADING:= '"VERY LARGE PRINTED OUTPUT'.

The word TASKS specifies that all tasks in the study
will constitute the vertical axis and G999, as the
last stage in the clustering process, indicates that
all incumbents in the study will comprise the elements
of the horizontal axis.

The user is also warned that the above PRINT command
represents the most inefficient way to print database
(system) information. A much faster PRINT command to
dump the same database information is as follows:

PRINT COLUMNS (G999) NOREMARKS /

ROWS (TASKS) NOREMARKS MISSING
HEADING:= 'VERY LARGE PRINTED OUTPUT'.

103

N

IRy

PRINT
PRINT SYNTAX
Refer to the syntax graph of the PRINT procedure.

PRINT
The keyword PRINT identifies the command.

VERTICAL DATA TYPE DESIGNATION

The PRINT procedure displays the rows and columns of a two-dimensional

.occupational databgse. Specification of the keyword ROWS gs the vertical

data type designation indicates that the vertical axis of the printed output
is to be made up of database rows. Conversely, if the keyword specified is
COLUMNS then the vertical axis of the output will consist of database
columns. If the data type designation for the vertical axis is ROWS, the
horizontal data type designation must be COLUMNS. The reverse would be true
were columns of the database chosen to define the vertical axis.

GROUP LIST

A group list is a lst of at least one group ID enclosed in paren-
theses. The group list serves to indicate to the PRINT procedure which
database columns are to comprise the vertical axis of the printed output.
If the vertical data type designation was COLUMNS, then a group list
specification must follow. Group IDs appearing in the group list may
consist of created groups defined through the use of the SELECT procedure,
CODAPS80 system cluster groups (such as G1-G3, as defined by the OGROUP
routine at database creation time) and the system group INCUMBENTS.

MODULE LIST

A module list is a list of at least one module ID enclosed in paren-
theses. The module list serves to indicate to the PRINT procedure which
database rows are to comprise the vertical axis of the printed output. If
the vertical data type designation was ROWS, then a module list specifi-
cation must follow. Module IDs appearing in the module list may consist of
created modules defined through the use of the SELECT procedure and the
CODAP80 system modules HVARS, TVARS, TASKS and SVARS.

NOREMARKS
Use of the keyword NOREMARKS at this point in the procedure's syntax

indicates that any remarks sssociated with the IDs specified to comprise the
vertical axis of the output are not to be printed.

104

.,
. Ly s
LW ey T 1 YR B A

PRINT

NOSUMMARY

Specification of the keyword NOSUMMARY indicates that a separate
summarization of vertical axis aggregates (group or module IDs appearing in
the vertical group or module list specification) is not.to be printed. -
SUMONLY

The keyword SUMONLY indicates that only the summary calculations down
vertical elements are to be printed. The actual vertical elements that went
into the summary calculations will not be printed.
SUMMARY EUNCTIO){S

There are six different summary calculations that can be performed down
the vertical axis. They are as follows:

AVGA - Average, including missing values.

AVGP - Average, excluding missing values.

STDA -~ Standard deviation, including missing values.
STDP - Standard deviation, excluding missing values.
SUM - Sum of non~missing values.

N - Number of non-missing values.

Specification of these summary functions may occur in any order. A summary
function may not be specified more than once.

SLASH

The slash delimiter '/' serves to differentiate vertical axis designa-
tions and horizontal axis designations. Designations occurring before the
slash ('/') define the elements of the vertical axis and designations fol-
lowing the slash define the elements of the horizontal axis. I[f the user
has specified COLUMNS before the slash, ROWS must be specified following the
slash. Conversely, if the user specifies ROWS before the slash, COLUMNS
must follow the slash.

HORIZONTAL DATA
TYPE DESIGNATION

The keyword ROWS indicates that row elements of the database will
comprise the horizontal axis of the printed output, while the keyword
COLUMNS indicates that the horizontal axis will consist of column elements.

105

PRINT

MODULE ROW LIST

A Module Row List (MROWLT) is a list of at least one module or row ID
enclosed in parentheses. Lists of module IDs, system row lists and lists of
row IDs may all occur together in a MROWLT. In regard to the PRINT proce-
dure, the MROWLT serves to specify which row elements are fo comprise the
horizontal axis on output.

GROUP COLUMN LIST

A Group Column List (GCOLST) is a list of at_least one group or column
ID enclosed in parentheses. Lists of group IDs, system group lists, system
column lists and lists of column IDs may all occur together in 8 GCOLST. In
regard to the PRINT procedure, the GCOLST serves to specify which column
elements are to comprise the horizontal axis on output.

NOREMARKS

Specifying NOREMARKS indicates that the remarks associated with the
horizontal axis element designations are not to be printed.

MISSING

The default condition for the PRINT procedure is not to print out those
elements of data that are missing (many of the task responses from an indi-
vidual may be missing). To print out the missing values, the user needs to
appropriately specify the keyword MISSING.

SORT DESCENDING BY

The user has the option of sorting the printed information. The
default is to sort by ascending value. By specifying DESCENDING the sort
proceeds by descending value. ;

SORT ID

The SORT ID is a single row or column ID enclosed in parentheses. The
ID must agree in type with the horizontal axis element designations. In
other words, if the horizontal axis data type is ROWS, then the element ID
specified as the SORT ID must be a row also. If the horizontal axis data
type is COLUMNS, then the element ID specified as the SORT ID must be a

" column also. "The values of the element ID specified in the SORT ID will be

used to sort the values of the horizontal axis element designations.

CUM

This keyword indicates that a running accumulation of specified IDs is
to be csloulated and printed.

108

-

o

PRINT

' CUM LIST

This is a list of at least one row or column ID enclosed in paren-
theses. For those IDs indicated in the CUMLIST, a running accumulation will
be calculated and printed. The IDs appearing in the CUMLIST must agree in
type with the data type of the horizontal axis designation.

NORESET

Specification of the NORESET keyword indicates that any accumulation
vectors are not to be reset to zero (which is the defauit) at the beginning
of a new vertical data type designation. -

. ‘ COUNT
Specification of the keyword COUNT alerts the system to expect a fol-

lowing integer constant, the value of which determines the occurrence of
line breaks in the procedure output. Line break specification is optional.

p ‘ CONSTANT

The value of the integer constant following the COUNT keyword deter-
{ mines the occurrence of procedure output line breaks. If, for example, the
integer constant specified was the number 3, a line break and count would
occur following every third line output by the procedure (see example 6, of
PRINT).

NOSKIP

Specification of the NOSKIP keyword indicates that printed output is
not to go to the top of a new page when printing the start of another
vertical data type designation (a new group or module).

b FORMAT
FORMAT SPECIFICATION

The PRINT procedure allows the user to specify the number of decimal
places that are to appear with printed values. The number of decimal places
that may be specified range from 0 (print as an integer) to 9. The user is '
warned to use good judgement when selecting a format specification. Up to
12 digits (including the sign) may be printed. Consider the following
example:

PRINT COLUMNS (INCUMBENTS) NOREMARKS / ROWS (H1-H9)
FORMAT H1 0 H3 1 '
HEADING='PRINT WITH FORMAT". d

The above PRINT command would produce a PRTVAR report. History variable Hl

would print as an integer and H3 would print with one decimal place. H2,
A m-HO would default to two decimal places.

{

i

i]
. 107 I '

rd
/,,.,A,v_,_,_.‘,,_. . _’ [- " M " - rad
; [S N)
; oo ' A'~'~:A,.1—‘,:,:%/-.-.;'&-»@54?;" b z‘*\'.a;m,'n‘..»?t“smw.‘!‘ -

PRINT

HEADING

The word HEADING serves to indicate that the following string is to be
used as a report title.
ASSIGNMENT OPERATOR

Either the symbols '=' or ":='. Either of these symbols may be used to
separate the HEADING keyword from the title character string.
‘CHARACTER STRING

Up to 10 lines-of 131 characters each may comprise the character string
in the PRINT statement., Each title line of up to 131 characters is enclosed
in single quotes, with the beginning of a new title line indicated by a
blank and another line enclosed in single quotes.

For example:

HEADING:= 'EXAMPLE OF A HEADING STRING BEING USED TO'
'DEMONSTRATE HOW TITLES ARE CONSTRUCTED'.

This example would produce two title lines centered at the top of the output
page:

EXAMPLE OF A HEADING STRING BEING USED TO
DEMONSTRATE HOW TITLES ARE CONSTRUCTED

PERIOD

A period ('.') must end the PRINT statement.

108

PRINT

PRINT EXAMPLES

EXAMPLE 1

PRINT ROWS (TASKS) / COLUMNS (AVGPAGE STDPAGE)
HEADING := '"PRINT EXAMPLE I ’
- 'PRINTING-OUT CREATED COLUMNS FROM
'AVALUE EXAMPLE 1'.

The reader is referred to example 1 of the AVALUE procedure. The above
PRINT syntax is requesting that task rows comprise the vertical axis of the
output, and the columns AVGPAGE and STDP AGE (generated through theexecution
of the syntax in AVALUE example 1) comprise the horizontal axis.

RXAMPLE 1

PRINTED OUTPUT
PAGE - 1
STUDY ID - SAMPLEDATAS0
PRINT EXAMPLE 1
PRINTING-OUT CREATED COLUMNS FROM
AVALUE EXAMPLE 1
. AVGPAGE AVERAGE AGE (AVGP), G6
‘ STDPAGE STD AGE (STDP), G6

AVGPAGE STDPAGE :
}
TASKS
R :
T -1 SUBDUE VIOLENT INMATES 32.60 14.10 Q
T - 2 SHAKE DOWN INMATES 32.60 14.20 .1
T - 3 SHAKE DOWN VISITORS 23.00 4.00 ;
T - 4 ESCORT INMATES 27.70 11.70 ;
T - § TESTIFY IN COURT 34.00 9.90 !

109

e ———

PRINT

EXAMPLE 2 {

BEGIN SAMPLEDATAS80 EXECUTE.
SELECT ROWS MOD! (T1-T3) 'SHAKE DOWN TASKS';
. ROWS MOD2'(T4-T5) 'OTHER TASKS'.
PRINT ROWS (MOD1 MOD2) AVGA STDA / COLUMNS (I1 I6) NOREMARKS
MISSING SORT BY (I1)
HEADING:= 'EXAMPLE 2'
'PRINTING OFF MODULE 1 & 2 DATA FOR'
'INCUMBENTS 1 & 6'.
END.

In this example, ‘the user is requesting that the vertical axis of the
output consist of rows (specifically, the rows identified by the module MCD1
- tasks 1-3 and MCD2 - tasks 4-5), and that the summary statistics AVGA and
STDA 'be calculated down them. The horizontal axis of the output will con-
sist of the columns I1 and [6, all missing values will be printed and the
values of these two columns will be in I1 ascending sort order. A separate
module summary will be printed on the page after the actual procedure
output.

EXAMPLE 2.
PRINTED OUTPUT
Page - 1 b
STUDY ID - SAMPLEDATAS80
EXAMPLE 2
PRINTING OFF MODULE 1 & 2 DATA FOR
INCUMBENTS 1 & 6

I1-1 -6
MOD1 SHAKE DOWN TASKS
T -2 SHAKE DOWN INMATES 9.00 64.00
T -3 SHAKE DOWN VISITORS 9.00 0.00
T -1 SUBDUE VIOLENT INMATES 64.00 36.00 ,
AVGA 27.33 33.00)
STDA 31.75 32,08

110

R TR T AT TN T ERIRL. NN SN e
. Lo

EXAMPLE 2

PRINTED OUTPUT (continued)

PRINT

STUDY ID - SAMPLEDATAS0
PRINTING OFF MODULE 1 & 2 DATA FOR

EXAMPLE 2

INCUMBENTS 1 & 6
1-1

MOD2 OTHER TASKS

T -5 TESTIFY IN COURT 0.00

T -4 ESCORT INMATES 18.00

AVGA ' 9.00

STDA 12.73

11
RN

I-6

0.00
0.00
0.00
0.00

PRINT
EXAMPLE 2
MODULE SUMMARY
PRINTED OUTPUT
} PAGE - 1
STUDY ID - SAMPLEDATAS0
EXAMPLE 2
PRINTING OFF MODULE 1 & 2 DATA FOR
. INCUMBENTS 1 & 6
sss AVGA SUMMARY ***
1-1 I-6
‘ MOD2 OTHER TASKS . 9.00 0.00
MOD1 SHAKE DOWN TASKS 27.33 33,33
PAGE - 2
STUDY ID - SAMPLEDATAS0
EXAMPLE 2
PRINTING OFF MODULE 1 & 2 DATA FOR
INCUMBENTS 1 & 6
#s* STDA SUMMARY ***
I1-1 I1-6
MOD?2 OTHER TASKS 12.73 0.00
MOD1 SHAKE DOWN TASKS 31.75 32.08
)
o
Q H
112 1 !

PRINT

EXAMPLE 3

Assume that the user had, in an eariier job run, created a new column
on the data base with the following DESCRIBE statement (see the section on
the DESCRIBE procedure for more information):

DESCRIBE ROWS TASKS FOR (G6)
G6TASKSAVGP :=AVGP
'AVERAGE TIME SPENT PERFORMING--G6'.

The effect of this DESCRIBE statement is to create a new column with a
length NTASK (5) elements long. The new column vector is named G6TASKSAVGP
and consists of the average (for those performing) across all incumbents (G6
is the last stage in the clustering process - there were a total of 7
incumbents) for each task in the study. . .

The values in this column (1 element for each task) would be:
29.2 32.5 . 25.2 36.5 29.0

Printing off this column, with all remarks, the user would code the
following PRINT statement:

PRINT ROWS (MOD1 MOD2) NOSUMMARY SUM / COLUMNS
(G6TASKSAVGP) HEADING:=EXAMPLE 3'
'PRINTING OFF THE GENERATED COLUMN G6TASKSAVGP'.

EXAMPLE 3
PRINTED OUTPUT

PAGE -1
STUDY [D - SAMPLEDATAS0
EXAMPLE 3
PRINTING OFF THE CREATED COLUMN G6TASKSAVGP

G8TASKSAVGP AVERAGE TIME SPENT PERFORMING--G6
G6TASKSAVGP

MOD1 SHAKE DOWN TASKS

T -1 SUBDUE VIOLENT INMATES 29.20

T - 2 SHAKE DOWN INMATES 32.50

T - 3 SHAKE .DOWN VISITORS 25.20

SUM 86.90

113

g

LN .
PR 4 e : i o .
MR A R T B O L LY U U TRW PR, - W7t
: : [N ST

PRINT
!
EXAMPLE 3
PRINTED OUTPUT (continued)
u:umuouuuat-tmuu#.-utumwumnantttuvmnu:nmu' sEEERES EEFERRRRRS
PAGE ~ 2

STUDY ID - SAMPLEDATAS0
EXAMPLE 3
PRINTING OFF THE CREATED COLUMN G6TASKSAVGP

G6TASKSAVGP AVERAGE TIME SPENT PERFORMING—G6 °
G6TASKSAVGP
i_ .
| MOD2 OTHER TASKS
T -4 ESCORT INMATES 36.50
T -5 TESTIFY IN COURT 29.00
" SUM 65.50

114 . i

s
’ ! _
) ’ . ; . ! " . N N .)‘ I. .
; T I R i th e w0y R
' ! I --*»t»ﬂ-ﬂﬂrﬁ R R T - . VT

PRINT

EXAMPLE ¢

For a much simpler report of example 3, the following options can be
requested in the PRINT statement (an accumulation.vector has also been
requested):

PRINT ROWS (MOD1 MOD2) NOREMARKS/COLUMNS (G6TASKSAVGP)
NOREMARKS CUM(GS6TASKSAVGP)
HEADING:='"EXAMPLE 4
‘A MORE PARSIMONIOUS REQUEST OF EXAMPLE 3
'ACCUMULATION VECTOR ADDED'.

EXAMPLE 4
PRINTED OUTPUT -,
PAGE - 1
STUDY ID ~ SAMPLEDATAS80
EXAMPLE 4 .
A MORE PARSIMONIOUS REQUEST OF EXAMPLE 3
ACCUMULATION VECTOR ADDED
ACCUMULATE -
G6TASKSAVGP G6TASKSAVGP
MOD1
T-1 29.20 29.20
T -2 32.50 61.70
-3 25.20 86.90
PAGE - 2
STUDY ID - SAMPLEDATAS0
EXAMPLE 4
A MORE PARSIMONIOQOUS REQUEST OF EXAMPLE 3
ACCUMULATION VECTOR ADDED
ACCUMULATE
G6TASKSAVGP G6TASKSAVGP
MOD2
T -4 36.50 ‘ 36.50
T-95 29.00 65.50
118

. P . ¢ ., u ' ", "». . "
SR PRIV W NI SRICT A Sy g, . o a8 . . E - . -
rir e Ay ""“*“’FW{»’,}‘%‘%W MR N g R e il A v s o < s AR
. A A - et - ; LA A -

. PP

PRINT

EXAMPLE §

In the previous four examples the PRINT procedure was always requested
to produce a report in which the rows of the database comprised the vertical
axis of the output and the horizontal axis of the output was comprised of
database columns. In this example, symamsetric display of the database will
be addressed by instructing the PRINT procedure to output database columns
on the vertical axis and data base rows on the horizcntal axis.

PRINT COLUMNS (G4) NOREMARKS/ROWS (MOD1) NOREMARKS
HEADING:='EXAMPLE 5' 'EXAMPLE OF SYMMETRIC DISPLAY'.

EXAMPLE §
PRINTED OUTPUT

PAGE - 1
STUDY ID -~ SAMPLEDATA80
EXAMPLE 5
EXAMPLE OF SYMMETRIC DISPLAY

G-14 T-1 T -2 T-3
-1 §4.00 9.00 9.00
I-2 11.00 11.00 22.00
I-3 . 0.00 0.00 20.00
EXAMPLE 6

BEGIN SAMPLEDATAS80 EXECUTE.
SELECT ROWS ALLROWS (H1l-H4, T1-T5, S1-S5)
'MODULE CONTAINING ALL SYSTEM ROWS'.
DESCRIBE ROWS (ALLROWS) FOR INCUMBENTS
ROWN = N 'NUMBER RESPONDING TO ROW';
ROWPCNT = PCNT 'PERCENT RESPONDING TO ROW'.
PRINT ROWS (ALLROWS) NOSUMMARY AVGA /
COLUMNS (ROWN ROWPCNT) COUNT 5
HEADING = 'EXAMPLE 6' 'USE OF COUNT OPTION IN PRINT'.
END.

The command syntax in example 6 will result in a report displaying both
the number and percentage of incumbents responding to each of the system
rows on the database. The SELECT command is requesting that all system rows
be associated with the module ID ALLROWS. The DESCRIBE command immediately
following will calculate the number and percentage of incumbent responses to
each of the rows associated with the module ID ALLROWS. The two created
columns (ROWN and ROWPCNT) generated from execution of the DESCRIBE syntax’
will ®'ach contain 14 elements and will be permanently saved on the database.
The PRINT command syntax will display down the vertical axis the rows
identified by the module ID ALLROWS and, across the horizontal axis of the y
printed output, the created columns ROWN and ROWPCNT. Note the effect of ‘
using the COUNT option.

116

,} e L e . L e e .
- o e
Frowy e,

PRINT
EXAMPLE 6
PRINTED OUTPUT
Page -~ 1
STURY ID. - SAMPLEDATAS0
EXAMPLE 6 . .
USE OF COUNT OPTION IN PRINT
ROWN NUMBER RESPONDING TO ROW
ROWPCNT PERCENT RESPONDING TO ROW
ALLROWS ROWN ROWPCNT
H-1 SEX) 7.00 100,00
H-~2 AGE ’ - 5.00 71.43
H-3 YEARS ON JOB 7.00 100.00
H-~-4 INCUMBENT ID 7.00 100,00
T-~1 SUBDUE VIOLENT INMATES 5.00 71.43
—————— S
T -2 SHAKE DOWN INMATES 6.00 85.71
T~3 SHAKE DOWN VISITORS 5.00 71.43
T ~4 ESCORT INMATES 4.00 57.14
T~5 TESTIFY IN COURT 3.00 42.86
S-1 SECONDARY -~ SUBDUE VIOLENT INMATES 2.00 28.57
S 10
S -2 SECONDARY - SHAKE DOWN INMATES 6.00 85.71
§ -3 SECONDARY - SHAKE DOWN VISITORS 5.00 71.43
S -4 SECONDARY - ESCORT INMATES 4.00 57.14
S-~5 SECONDARY - TESTIFY IN COURT 3.00 42.86
AVGA 4.93 70.41

117

PRINT

O

(O L .p.:.ﬁ.:. NOLLY 18 - - \ \
VI, WNIVHVIED *.::t..ﬁl—lﬁu.u:nﬂ.:v — A e v| ..! o V\c ﬂ _ ..:;2.3— e v \A~_ A

mvﬂmm.mvl _mwﬂ_ _ G /?,..i\\)y Crid (oo %...s,;.& ¢

) .
e 3| | e — 5
_?@O ,me\v Am,h.w\/ /m,u.‘h\ v [y
ﬁx ; \P...,.h_b# _
m) —
i e ey W N TN e T e | mzin)
S El caloh tetievite el g e J
gy)
. — ,L

N

RANDOM
INTRODUCTION

PURPOSE

From the elements of any specified module or group ID, the RANDOM
procedure will randomly select a subsetting module or group.

FORM
The general form of the RANDOM command is as follows: .

1) The procedure keyword RANDOM.

2) The keyword ROWS or COLUMNS.

3) An indication of the row or column aggregate (in the form
of a module or group ID) from which random selection is
to be made.

4) A constant or, optionally, the keyword KTH followed by a
constant.

5) A new ID. The new ID will be assigned to the module or
group subset selected.

8) Optionally, the keyword NOSAVE.

7) Descriptive text (a remark) supplied by the user that
will be associated with the new ID.

EXAMPLE

RANDOM ROWS SVARS 3 RANDOMSVARS '3 RANDOM SVARS'.

The above RANDOM command syntax is requesting that three -rows be
randomly selected from the row elements of CODAP80 aystem module SVARS
(81-85). The randomly selected module subset will be assigned the ID
RANDOMSVARS as well as the remark 3 RANDOM SVARS.

OUTPUT FROM PROCEDURE
Execution of the RANDOM procedure produces no printed output. I[f

NOSAVE was not specified the randomly selected module or group will be
permanently saved on the database for future reference.

119

S e

RANDOM
RANDOM SYNTAX
Refeg to the syntax graph of the RANDOM procedure.

RANDOM

The keyword RANDOM identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates to the system whether it is to be
rows or columns of the database that are randomly selected.

MODULE ID

A module ID is an identified agyregate of database rows. The aggregate
of rows identified by the module ID will serve as the population from which
the RANDOM procedure will select a module subset. If the data type
designation following the RANDOM command keyword is ROWS, then a module ID
must follow.

CAUTION: All created module IDs appearing in the RANDOM
command syntax must have been gelected and per-
manently saved during a previous execution of the
CODAP80 interpreter. RANDOM cannot process created
modules that were selected in the same run stream.

GROUP ID

A group ID is an identified aggregate of database columns. The
aggregate of columns identified by the group ID will serve as the population
from which the RANDOM procedure will select a group subset. If the data
type designation following the RANDOM command keyword is COLUMNS, then a
group 1D must follow.

CAUTION: All created group IDs appearing in the RANDOM
command syntax must have been seiected and per-
manently saved during a previous execution of the
CODAPS0 interpreter. RANDOM cannot process groups
that were selected in the same run stream.

KTH

Appearance of the optional keyword KTH indicates that the selected
module or group subset is to consist of every "Kth" element of the module or
group serving as the population, with the first element being randomly
chosen. See example 2 of RANDOM for more information.

120

Ead

. [
[P W . . v
R R P . ""“’\k"*‘ﬁ' R L IRR L I LT VR PR SV ”

NN

RANDOM

CONSTANT

A user supplied integer numeric velue, such as '10'. The value of the
constant will determine the number of elements selected frcm the population
module or group to be in the subset. If the optiocnal keyword KTH preceeds
the constant, then the value of the constant represents every "Kth" element
to be selected.

ID

Any valid CODAP80 ID, supplied by the user. The ID supplied will be
associated with the module or group subset that was randomly selected.

.NOSAVE

If the optional keyword NOSAVE is specified, the randomly selected
module or group will not be permanently saved for future reference.
REMARK

This is a string of up to 240 characters, enclosed in sgingle quotes.
The remark will be associated with the new module or group ID created. A
remark must be associated with the new ID.

PERIOD
A period ('.'") must end the RANDOM statement.

121

. -
R N R T . T Tt O P L S

N

RANDOM
RANDOM EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATAS80 EXECUTE.
RANDOM ROWS TASKS'2 RANDMODULE

'2 TASK ROWS SELECTED AT RANDOM.
END.

The above RANDOM command syntax is requesting that two rows be randomly
selected from the aggregate of rows identified by the module ID TASKS
(T1-T5). Execution of the above syntax will result in the creation of
module RANDMODULE. This module ID will be associated with two task rows
selected randomly. The module ID,-and its associated remark, will be
permanently stored for future reference.’

EXAMPLE 2
BEGIN SAMPLEDATA80 EXECUTE.
RANDOM COLUMNS INCUMBENTS KTH 2 RANDOMGROUP
'EVERY 2ND INCUMBENT COLUMN'.
END.

The above RANDOM command syntax is requesting that from the column

aggregate identified by the system group INCUMBENTS (I1~I7), every 2nd (Kth) |

column be selected and be identified by the new created group ID
RANDOMGROUP. The first column selected from the system group INCUMBENTS
is to be randomiy determined. If, for example, the first coiumn chosen
randomly from group INCUMBENTS was 14, then the new created group
RANDOMGRCQUP will be associated with 4 system columns; 14, 16, I1 and I3.
The procedure will continue selecting every 2nd element of the group ID
specified to act as the population until it has cycled through all the
elements associated with the ID INCUMBENTS, stopping the selection process
only when it happens back across the first column element (the randomly
selected column, I4) that started the process to begin with.

122

- RANDOM

NUYNIY

- ANVISNOD

123

S e e

L N

~\\

RELY
INTRODUCTION

PURPOSE.

The RELY procedure calculates reliability estimates of the mean of a
set of k raters (Rkk) and that of a single rater (RI). The reliability
estimates calculated are useful in the determination of agreement among the
responses from a series of raters or judges. The computational method is
from Winer (1971).

FORM]
The general form of the RELY procedure is as follows:

1) The procedure keyword RELY.

2) The keyword ROWS or COLUMNS.

3) A designation of the rows (a module) or columns (a group)
for which reliabilities are to be calculated.

4) An indication of whether or not the reliabilities are to
be "adjusted."

5) Heading(s) to serve as titles on the printed output from
the procedure.

EXAMPLE

BEGIN SAMPLEDATAS80 EXECUTE.
ADDATA COLUMNS FOR TASKS N=3
JUDGE1 'JUDGE NUMBER 1!
JUDGE2 ‘'JUDGE NUMBER 2'
JUDGE3 '"JUDGE NUMBER 3'
FORMAT '(5F1.0)',
SELECT COLUMNS JUDGES (JUDGE1 JUDGE2 JUDGE3)
'‘GROUP OF JUDGES'.
RELY COLUMNS JUDGES FOR TASKS
HEADING='"EXAMPLE OF RELY PROCEDURE'.
END.
27441
38331
26342

The above example illustrates a classic use of the RELY procedure.
Three judges are rating each of the five tasks on the database as to the
consequences of their inadequate performance. The ratings are appended to
the database through the use of the ADDATA procedure. The three judges'
responses are formed into a group by the SELECT procedure and then this
group of responses is submitted to the RELY procedure in order that an esti-

‘ mate of reliability may be calculated.

124

RELY

OUTPUT FROM PROCEDURE

Output from the RELY procedure consists of printed cutput displaying
Rkk and Rll reliabilities, the various sums of squares and mean squares that
went into the calculation of the reliabilities and a break-down of the indi-
viduai raters' torrelations and T values. :

128

P

)

RELY
RELY SYNTAX
Refer to the syntax graph of the RELY procedure.

RELY)

The keyword RELY identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS indicates that the RELY procedure is to preform its
calculations on database rows. .The keyword COLUMNS indicates that reliabil-
ities are to be calculated on database columns.

MODULE OR GROUP ID

If the data type designation is ROWS, then a module ID must follow., If
COLUMNS is designated, a group ID must follow. The module or group ID
indicates the database rows or columns 'for which reliabilities are to be
calculated.

FOR

The keyword FOR alerts the procedure to expect, depending on the type
of the preceding data designation, a module or group ID.

GROUP OR MODULE ID

If a module ID occurs before the FOR keyword, then a group ID must fol-
low. Conversely, if a group ID precedes the FOR keyword, then a module ID
must follow. The group or module ID following the FOR keyword indicates the
values across which reliabilities for rows or columns are to be calculated.
Statistically, the group or module ID following the FOR keyword can be
thought of as an indication of the number of observations contained in each
of the rows or columns for which reliabilities are being calculated.

ADJUST

Specification of the optional keyword ADJUST indicates that, when

- calculating reliabilities, differences due to anchor points are not to be

considered part of the error of measurement.

128

N

e

i

RELY

HEADING

The keyword HEADING indicates that the following character string
enclosed in single quotes is to be used as a title on the printed output.
ASSIGNMENT OPERATOR

A "=" symbol. The assignment operator separates the HEADING keyword
from the character string(s) serving as a report title.
CHARACTER STRING

Up to 10 lines of 131 characters each may comprise the title character
string.) .
PERIOD

A period ('.") must end the syntax of the RELY procedure.

127

NN

RELY

RELY EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATAS80 EXECUTE.
ADDATA ROWS FOR INCUMBENTS N=6

TRACTOR '‘OPERATE TRACTOR'
JACKHAMMER 'OPERATE JACKHAMMER'
BULLDOZER 'OPERATE BULLDOZER'
POWERWRENCH 'OPERATE POWERWRENCH'
FLAMETYROWER 'OPERATE FLAMETHROWER'
TELEPHONE 'OPERATE TELEPHONE'

FORMAT '(7F1.0)'.

SELECT ROWS EQUIPMENT (TRACTOR JACKHAMMER BULLDOZER
POWERWRENCH FLAMETHROWER TELEPHONE)
'EQUIPMENT MODULE'.

ADDATA COLUMNS FOR EQUIPMENT N=4

RATERL 'RATER NUMBER 1'
RATER2 'RATER NUMBER 2'
RATER3 'RATER NUMBER 3
RATER4 'RATER NUMBER 4'

FORMAT '(§F1.0)'.

SELECT COLUMNS RATERS (RATER1 RATER2Z RATER3 RATER4Y)
'RATERS OF EQUIPMENT DIFFICULTY".

RELY COLUMNS RATERS FOR EQUIPMENT
HEADING='RELIABILITY OF EQUIPMENT DIFFICULTY RATINGS'.

END.

1100011

0010100

1100000

1001000

0000001

1000001

251726

473948

351968

362814

In the above example six rows are initially being added to the database
that represent different equipment usage indices for each incumbent (1 if
the incumbent opserates the equipment and 0 if they do not). Each of the six
equipment rows are being permanently appended to the database. The SELECT

.procedure following the first ADDATA command is forming the six equipment

rows into a module named EQUIPMENT. The second ADDATA command is adding
four columns to the database adjacent to the rows contained in module
EQUIPMENT. The values of the four columns are from Winer (1971), page 288,
and are being used in this example to represent equipment difficulty indices
from four raters. The second SELECT command is forming the four columns of
difficulty ratings into a group called RATERS. Finally, the RELY procedure
is being invoked to calculate reliabilities on the four columns of rating
measured across the six equipment rows.

128

. v
e e A T e s

oip uﬁm% }

’

/
t . ERE T
E 8 . .
4 [

EXAMPLE 1
PRINTED OUTPUT

RATERS - RATERS

RELY

PAGE - 1

STUDY ID - SAMPLEDATAS80
RELIABILITY OF EQUIPMENT DIFFICULTY RATINGS

TASKS - EQUIPMENT

RO °
RKK
BTSS
LB
BRSS
RSS

TSS
BTMS
WMS
BTMS
RMS

™S
NRATER
N

K

0.7
0.9
12
3

1

1
15
2

RATERS OF EQUIPMENT DIFFICULTY
EQUIPMENT MODULE

37705 RELIABILITY FOR A SINGLE RATER
18367 RELIABILITY FOR THESE K RATERS
2.500 BETWEEN TASK SUM OF SQUARES
6.000 WITHIN TASK ‘SUM OF SQUARES
7.500 BETWEEN RATER SUM OF SQUARES
8.500 RESIDUAL SUM OF SQUARES
8.500 TOTAL SUM OF SQUARES
4.500 BETWEEN TASK MEAN SQUARE
2.000 WITHIN TASK MEAN SQUARE
5.833 BETWEEN RATER MEAN SQUARE
1.233 RESIDUAL MEAN SQUARE
6§.891 TOTAL MEAN SQUARE

4. AVERAGE NUMBER OF TASKS

6 NUMBER OF TASKS

4 NUMBER OF RATERS

PAGE - 2

BEGIN SAMPLEDATA80 EXECUTE,
RELY COLUMNS RATERS FOR EQUIPMENT ADJUST
HEADING='ADJUSTED RELY",

END.

The second example of the RELY procedure

STUDY ID - SAMPLEDATAS(.
RELIABILITY OF EQUIPMENT DIFFICULTY RATINGS
RATER RATER NUMBER OF TASKS
NUMBER ID RATED BY THIS RATER CORRELATION T-VALUE
I RA 6. 0.988770 12.1
2 RATER2 6. 0.986772 12.1739
3 RATER3 6. 0.793378 2.6067
4 RATER4 6. 0.784837 2.5329
EXAMPLE 2

is requesting that

reliabilities be calculated on exactly the same data as in the first example
(since all data that was added was saved permanently, the second example is

much simpler than the first).

The main difference between the two RELY

examples is that the second example is requesting that statistics be
"adjusted" (anchor points are not to be considered part of the error of

129

AT i 1o W o et
_—

IR ...4,(..’-,,4, ,‘:», dppl m;{y et g A s ..,-&,,; AT RN g —~— -

4

agn MG

TR

MY

RELY

measurement). The output generated from the second RELY example will be
very simiiar to that generated by the first RELY example, except that
additional adjustment statistics will be printed (in this case RKK will
equal .949660 and R1l will equal .825059).

130

RELY

HOLVYYIJO

131

REPORT
INTRODUCTION

PCRPOSE

The REPORT procedure is used to facilitate documentation by producing
an up-to-date listing of the information that resides on a given CODAPS0
database.

FORM
The general form of the REPORT procedure is as follows:
1) The procedure keyword REPORT. v
. 2) A keyword indicating the database information to be
reported,
3) The optional keyword NOREMARKS.
4) A period or semicolon.
EXAMPLE

BEGIN SAMPLEDATAS80 EXECUTE.

REPORT SYSCNST.

END. '

The above REPORT syntax is requesting that a listing be produced dis-
playing information on the system constants that reside on the database.
OUTPUT FROM PROCEDURE

As a function of user input, REPORT will produce a printed display of

information pertaining to system constants, rows, columns, modules or groups
that reside on a CODAP80 database.

132 t

REPORT
REPORT SYNTAX
Refer to the syntax graph of the REPORT procedure,

REPORT
The keyword REPORT identifies the command.

ALL)
Specification of the ALL keyword will produce a listing pertaining to
all the stored information on the database.
MODULES
The appearar.ce of the MODULES keyword in the REPORT procedure syntax
will produce a listing of information pertaining to the system and created
modules that reside on the database.
_ SYSMODS -
Specification of the. SYSMODS keyword will produce a listing of all
database system modules.
CMODS
Specification of the CMODS keyword will produce a listing of all data-
base created modules.
GROUPS
The appearance of the GROUPS keyword will produce a listing of informa-
tion pertaining to the system and crested groups that reside on the data-
base.
SYSGROUPS
Specification of -the SYSGROUPS keyword will generate a listing of
information pertaining to the system groups that reside on the database.
CGRPS

A CGRPS keyword designation will result in a listing of the creuted
groups on the database.

133 '

-

e S - e L - T
R R e e B e e ‘ﬁh, : . ot i
DA R R g AT I ol e TR S T S L e .
) - : B . W (e -:\'ﬁ“,‘:"m vJ

NS

R

REPORT

ROWS

The appearance of the ROWS keyword will produce a listing of both
system and created rows on the database.

SYSROWS

A SYSROWS keyword designation will result in a listing of database
system rows.

HROWS

The appearance of the HROWS keyword will generate a listing of the
history rows on the database. ‘

TROWS

The appearance of the TROWS keyword will generate a listing of the task
rows on the database.

CROWS

A CROWS keyword designation will presult in a listing of created
database rows.

COLUMNS

The appearance of the COLUMNS keyword will generate a listing of both
system and created columns on the database.

SYSCOLS

Specification of the SYSCOLS keyword will produce a listing of database
system columns.

CCOLS

A CCOLS keyword designation will result in a listing of created
database ocolumns.

CONSTANTS

The appearance of the CONSTANTS keyword will produce a listing of
system constants residing on the database.

134

-~ —

:
gl T ENTE T S

REPORT

SYSCNST

Specification of the keyword SYSCNST will produce a listing of database
system constants.

NOREMARKS .

Specification of the keyword NOREMARKS will suppress the printing of
any remarks associated with the listed databagse information.

PERIOD OR SEMICOLON

A period must end the syntax 9f the REPORT procedure. For an
illustration of the use of the terminating semicolon, see example 2 of

REPORT.

138

REPORT EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATAS86 EXECUTE.:
REPORT TROWS.
END.

REPORT

The above REPORT syntax will produce a listing of the task rows

residing on the database.

EXAMPLE 1
PRINTED OUTPUT

STUDY ID - SAMPLEDATAS0
TASK ROW REPORT

ROW REMARK

PAGE - 1

T 1 SUBDUE VIOLENT INMATES
T 2 SHAKE DOWN INMATES

T 3 SHAKE DOWN VISITORS.

T 4 ESCORT INMATES

T § TESTIFY IN COURT

EXAMPLE 2
BEGIN SAMPLEDATA80 EXECUTE.

REPORT HROWS; SROWS.
END.

+

The above REPORT syntax will produce a listing of both the history and
secondary rows residing on the database. Note the terminating semicolon.

EXAMPLE 2
PRINTED OUTPUT

STUDY ID - SAMPLEDATAS0
HISTORY ROW REPORT

PAGE - 1

ROW REMARK
oot N +
H 1 SEX
H 2 AGE
H 3 YEARS ON JOB
H 4 INCUMBENT ID

136

™

v . :, T o '
DIRRER RS o i SR T TE e IR
bk : T

- &

REPORT
q EXAMPLE 2
PRINTED OUTPUT (continued)
PAGE - 2
STUDY ID - SAMPLEDATAS0
SECONDARY ROW REPORT
ROW REMARK
TN + ¥ ’ +
s 1 SECONDARY - SUBDUE VIOLENT INMATES
s 2 SECONDARY - SHAKE DOWN INMATES
s 3 SECONDARY - SHAKE DOWN VISITORS
S 4 SECONDARY - ESCORT INMATES
S s SECONDARY - TESTIFY IN COURT

137 D

3 g,
I A ‘#;«uf' e el ol

/ !)
(RS = : G sy Y

=
e

o
e

|

SYSAGWS

<

138

REPORT

1

SELECT
INTRODUCTION

PURPOSE

The SELECT procedure defines aggregates of rows of columns on a data-
base. SELECT provides the means by which CODAP80 users generate modules of
database rows or groups of database columns that meet speciffed criteria.
Generally, the CODAP80 user will not be interested in processing an entire
database at one time but will only be concerned with a particular subset of
the database. Through the use of the SELECT procedure aggregates of data-
base rows or columns are assigned module or group ID's. Any future refer-
ence in other procedures to the selected ID alerts CODAPS80 to direct proc-
essing to that subset of the database associated with it.

FORM
The general form of the SELECT procedure is ss follows:

1) The procedure keyword SELECT.

2) A data type designation specifying whether rows or col-
umns of the database are to be selected. .

3) A user supplied valid CORAP80 ID that will be associated
with the aggregate of database rows or columns selected.

4) Selection criteria defining which database rows or col-
umns are to be members of the new module or group.

5) An indication of whether or not the new module or group
ID is to be permanently saved for future reference.

EXAMPLE

BEGIN SAMPLEDATAS80 EXECUTE.

SELECT ROWS NEWMODULE (T2-T3) NOSAVE
'SHAKE DOWN TASKS'.

END.

Execution of the above SELECT example will form a module (named
NEWMODULE) of two tasks. The module will exist only for the duration of the
computer run (as indicated by the NOSAVE keyword). The remark SHAKE DOWN
TASKS will be associated with the module ID.

OUTPUT FROM PROCEDURE
Execution of the SELECT procedure produces no printed output. The

result of executing the SELECT procedure will be a new module or group of
database rows or columns being defined.

139

o —

4k o ‘V:’f;fh"‘f‘-" " V‘-‘*‘-’f"i‘ﬁﬁ"_T“’F“%ﬂﬂ“ﬂ'w Bag R TR R Mad
N . N ot . i e

R B2E Sh

SELECT
SELECT SYNTAX
Refer to the syntax graph of the SELECT procedure.

SELECT
The keyword SELECT identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates whether a module or group is
being selected.

ID

This is any valid 1-12 character CODAP80 ID supplied by the user. It
will be associated with the module or group being selected.

COLUMN LIST

A column list is a list of database columns enclosed in parentheses.
System columns and created columns may both be in the list. The columns
appearing in the list will be included in the group being selected. A col-
umn ID appesring in the list may only be specified once. System columns
appearing in the list must be specified in ascending numerical order. An
example of a valid column tist is "(11-13, IS)".

ROW LIST

A row list is a list of database rows enclosed in parentheses. System
rows and created rows may both be in the list. The rows appearing in the
list will be included in the module being selected. A row [D appearing in
the list may only be specified once. System rows appearing in the list must
be specified in ascending numerical order. An example of a valid row list
is "(H1, T1-T3, S1, S5)".

BOOLEAN OPERATOR

. A Boolean operator is used to connect a row list with a column Boolean
expression or a column list with a row Boolean expression. Acceptable
Boolean operators are ".AND." and ".OR." and help to define the criteria for
module or group selection. If the Boolean operator is ".AND." it means only
those elements of the preceding row or column list that meet the criteria of
the following Boolean expression will be included in the group or module.
If the Boolean operator is ".OR." it means all the elements of the preceding
row or column list plus those that meet the criteria of the following
Boolean expression will be included in the group or module. See SELECT
example 7 for illustration.

140

-

i

SZLECT

' ROW BOOLEAN EXPRESSION®

A row Boolean expression is a standard Boolean expression used to
establish a set of criteria upon which to base the inclusion of a database
column into a group. As an extension of the standard Boolesn expression,
gelection criteria can be focused on a particular’'subset of database columns
by defining that they be "IN" or "NOT IN" a specific group. See SELECT
examples 3 and 4 for illustration.

COLUMN BOOLEAN EXPRESSION®*
A column Boolean expression is a standard Boolean expression used to

establish a set of criteria upon which to base the inclusion of a database
row into a module. As an extension of the standard Boolean expression,

selection criteria can be focused on a particular subset of database rows by-

defining that they be "IN" or "NOT IN" a specific module. See SELECT
examples 5 and 6 for illustration.

NOSAVE

Specification of the optional keyword NOSAVE indicates that the defined
group or module will not be permanently saved for future reference, but will
exist only for the duration of the computer run.

REMARK

A remark is a string of up to 240 characters enclosed in single quotes.
The remark will be associated with the group or module selected.

PERIOD OR SEMICOLON

A period ('.") must end the syntax of the SELECT procedure. If the
syntax ends in a semicolon, another SELECT command may immediately follow
‘without having to repeat the SELECT command keyword.

*NOTE

A Boolean expression may consist of relational operators, Boolean
operators or both. Relational operators (often called comparison operators)
propose a relationship between two quantities and ask CODAPS0 to determine
whether or not the relationship holds. The relational operators take the

following form:

= or .EQ. equal to
== or .NE. not equal to
. >= or .GE. greater than or equal to
(<= or .LE. less than or equal to
> or .GT. greater than
< or .LT. less than

141

’ !
. - , — -
| i P . ¥y - .
. . : . B T Ty o S Tl ae ‘i!'""'“'“'f”-“ o S e
B - - b ARt ' i -

o
4 N

SELECT

Boolean operators (often called logical infix operators) are usuaily
used in expressions that also include relational operators. The Boolean
operators take the following form:

& or .AND.
! or .OR.

See SELECT example 8 for an illustration of the use of both relational
and Boolean operators in a Boolean expression.

S ¥

142

’, } - - "

/ ! e e “ .
j . — e a- . L. T R N R L IO

N 3 e e e iﬁv'» Ce .
. A N ti .-A?q‘ FXPRel T P " - . . "
B SRR N - - - P - N
N - - - . - N

[& . - oL y

SELECT
SELECT EXAMPLES _

EXAMPLE 1

BEGIN SAMPLEDATA80 EXECUTE.
SELECT ROWS DUTYA (T1 T2 T4) 'INMATE TASKS';
ROWS DUTYB (T3 T5) 'NON~INMATE TASKS';
ROWS SHAKEDOWN (T2 T3) 'SHAKE DOWN TASKS';
COLUMNS PEOPLE (11-I3) 'FIRST-3 PEOPLE ON DATABASE'.
END.

The above SELECT syntax is generating three modules (DUTYA, DUTYBE,
and SHAKEDOWN) of database rows and one group (PEOPLE) of database
columns. They will be permanently saved on the database for future refer-
ence. The SELECT syntax in example 1 illustrates the use of row lisis and
column lists to define the criterion for selection of a database row or
column as a member of a module or group. Note that a database row may be
selected for membership in more than one module (the same is true of data-
base columns).

EXAMPLE 2

BEGIN SAMPLEDATAS80 EXECUTE.

SELECT COLUMNS MALES (Hl=1) 'MALE INCUMBENTS";
COLUMNS FEMALES (H1=2) 'FEMALE INCU..BENTS'.

END. :

The SELECT syntax in example 2 illustrates the use of simple row
Boolean expressions to define column membership in a group. The effect of
the syntax in example 2 is to select those database columns in which Hl=l
(H1 is sex; see Sample Database) as members of group MALES, and those in
which H1=2 as members of group FEMALES. Group MALES will have the following
columns as members: 12, 14-17. Group FEMALES will have the columns I1 and
I3 as members.

EXAMPLE 3

BEGIN SAMPLEDATA80 EXECUTE.

SELECT COLUMNS OLDERMALES (Hl=1 & H2 > 30)
'OLDER MALE INCUMBENTS'.

END.

The SELECT command in example 3 is using a row Boolean expression to
generate-a group of database eolumns named OLDERMALES. Membership is
defined as those database columns in which the rows Hl (Sex) equals 1 and H2
(Age) is greater than 30. The members of group OLDERMALES will be the data-
base columns 14 and I8,

143

e ——— e

SELECT

EXAMPLE 4

BEGIN SAMPLEDATAS80 EXECUTE.

SELECT COLUMNS FEMALE_G4 (H1=2 & IN G4)
. 'FEMALE INCUMBENTS IN CLUSTER GROUP G4'.

END. o

Example 4 of SELECT is demonstrating the use of a row Boolean expres-
sion to select a group (named FEMALE G4) consisting of those incumbents who

are female and also members of the system cluster group G4 (which was gener-

ated by the OGROUP database creation routine). The members of group FEMALE
G4 will be the columns I1 and I3. Note the use of the "IN" parameter in the
Boolean expression. Instead of specifying the system cluster group G4, the
user could just have well specified the created group PECPLE (which was
selected in SELECT example 1). The effect would be the same.

 EXAMPLE 5

BEGIN SAMPLEDATAS80 EXECUTE.
DESCRIBE ROWS TASKS FOR (INCUMBENTS) PERCENT RESP=PCNT
'PERCENTAGE OF INCUMBENTS RESPONDING TO TASKS'.
SELECT ROWS HIPCNT_TASKS (PERCENT_RESP > 50)
'TASKS WITH GREATER THAN 50% RESPONDING'.
END. -t '

The CODAP80 syntax in SELECT' example 5 is demonstrating how a user
might go about selecting a module of task rows that had more than 50 percent
of the incumbents responding. The DESCRIBE command is calculating, for
every task row on the database, the percentage of incumbents responding.
The effect of the command is to create a column of percentage values (named
PERCENT_RESP) with a value for every task row:

PERCENT_RESP

Tl 71.43
T2 85.71
T3 71.43
T4 57.14
TS 42.86

The SELECT command in example 5 is using a column Boolean expression
to select a module of those row elements of the created column PERCENT RESP
that exceed a value of 50. The selected module will be named HIPCNT_TASKS
and will have the rows T1-T4 as members. To produce a listing of the task
rows that were selected, the user need only reference the ID assigned to the
module in,. say, the PRINT procedure, and CODAP80 will direct processing at .
the members in question.

144

et e

_\
,
-
L3
:
‘
3
¥
1
]

-

‘ . SELECT

EXAMPLE 6

BEGIN SAMPLEDATA80 EXECUTE.

SELECT ROWS NEWMOD (PERCENT_RESP >=50 & PERCENT_RESP <=75
& NOT IN DUTYB) -

'TASXS WITH 50%-75% PERFCRMING AND NOT IN DUTYB'.

END.

The SELECT command in example 6 is creating a module (named NEWMOD)
with the task rows Tl and T4 as members. The task rows selected correspond
to those row elements of the column PERCENT RESP that ranged in value from
50 to 75, and that were at the same time not members of module DUTYB (see
example 1 and 5 of this procedure). Note the use of the "NOT IN" parameter
in the column Boolean expression.

EXAMPLE 7

BEGIN SAMPLEDATAS80 EXECUTE.
SELECT COLUMNS NEWGRP (I1-I3) .AND. (S2=1)
'INMATE SHAKE DOWN ASSISTANT AMOMNG FIRST 5
INCUMBENTS'.
END.

The SELECT command in example 7 is demonstrating how a column list and
a row Boolean expression may be combined to define the criteria for group
membership. The effect of the command is to create a group (named NEWGRP)
with the columns I1, [2 and I5 as members. The appearance of the¢ Boolean
operator ".AND." between the column list and the Boolean expressioi: defines
the selection criteria for group membership as being only those elements of
the preceding column 1list (I1-15) that are true for the following row
Boolean expression (S2=1). Had the Boolean operator between the column list
and the row Boolean expression been ".OR." the selection criteria for group
membership would have been those elements appearing in the preceding column
list plus any columns that were true for the following row Boolean expres-
sion (resulting in a group with the columns I1-i6 as members).

EXAMPLE 8

BEGIN SAMPLEDATAS80 EXECUTE.

DESCRIBE ROWS TASKS FOR (INCUMBENTS)
PCNTRESPOND=PCNT 'PERCENT RESPONDING';
NUMBRESPOND=N ‘NUMBER RESPONDING'.

SELECT ROWS NEWMODULE (PCNTRESPOND > 70
.AND. PCNTRESPOND < 90 .OR. NUMBRESPOND .EQ. 3)
'MODULE MADE UP OF TASKS T1-T3 & T5'.

END.

The DESCRIBE command in example 8 is generating two database columns.
Column PCNTRESPOND will consist of the percentage of members reaponding to
each task and column NUMBRESPOND will consist of the number of members
responding to each task.

148

T ——— e

SELECT
1 The values in the two columns will consist of: } 1
PCNTRESPOND NUMBRESPOND
T1 .71.43 5
’ T2 85.71 6
T3 71.43 5
T4 57.14 4
TS 42.86 3

The SELECT command in example 8 is using a column Boolean expression
congisting of both relational operators and Boolean operators to select task
rows into module NEWMODULE. The effect of the SELECT command is to select
those task rows in which the column PCNTRESPOND is greater than 70 and less
than 90 (T1, T2 and T3) or the column NUMBRESPOND is equal to 3 (T5). Based
on tr;e criteria defined In" the SELECT command the selected rows will be

‘ T1-T3 and TS.

146 ' ’

. ; ,/) '
e - s e e e 2 o ‘;}“-. . o
PN s - A o [

SELECT

=H=H =

147

STANDARD
INTRODUCTION

PURPOSE

The STANDARD command standardizes specified rows or columns of the
database to any given mean and standard deviation. For each row or column
specified, STANDARD will create a new stanidardized row or column and, if
indicated, store it permanently on the database.

FORM
The general form of the STANDARD command is as follows:

1) The procedure keyword STANDARD.

2) The keyword ROWS or COLUMNS - this keyword alerts the
system that either rows or columns of the database are to
be standardized.

3) A description of which rows or columns of the database
are to be standardized.

4) A group or module designation representing the "length"
or the number of elements that are contained in the
row(s) or column(s) that is being standardized.

5) A user-supplied constant indicating the mean the
standardized values are to take.

6) A user-supplied constant indicating the standard
deviation the standardized values are to take.

7) A new ID. The new ID will have a numeric value, ranging
from 1 to the number of rows or columns specified in 3,
appended to it by the system. The user must be careful
not to specify an ID that will conflict with one previ-
ously defined in the database. The user must also take
care to specify an ID that, when the numeric value is
appended to it by the system, is not longer than 12 char-
acters. If only a single row or column is being stand-
ardized, a numeric value is not appended to the new ID.

9) Optionally, the keyword NOSAVE. If NOSAVE is specified,
then the new IDs created for this run will not be re-
tained for future use.

10) A remark that will be associated with the new IDs.

EXAMPLE

STANDARD ROWS (H1) FOR INCUMBENTS
MEAN :=50 STD:=10 NEWROW 'NEW STANDARDIZED ROW'.

The above STANDARD command syntax is requesting that the database row .)
H1l be standardized to a mean of 50 and a standard deviation of 10 for
every incumbent on the database. The standardized values of Hl will be

148

Wt

.

- STANDARD

named NEWROW and this created vector will be permanently added as a new row
on the database.

OUTPUT FROM PROCEDURE

Execution of the STANDARD command produces no printed output.

STANDARDIZATION FORMULA
The equation used by STANDARD for standardization is:

T = s'(xs- X v

Where:

T = Standardized value.

Original raw data point.

Original mean of row/column being standardized.

Original standard deviation of row/column being stand-

ardized. -

X'= User specified constant indicating the mean the new
standardized row/column will take.

S'= User specified constant indicating the standard devia-
tion the new standardized row/column will take.

@ X
woanon

|
149 {

T bl

g " ~ Pl . : "

. . N SR) 3 LN

e v R ke e g‘?g?w‘“ B - A I
N A o ;

STANDARD

STANDARD SYNTAX

Refer to the syntax graph of the STANDARD procedure.

STANDARD

The keyword STANDARD identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS indicates whether rows or columns of the
database are to be standardized.

MODULE ROW LIST

A Module Row List (MROWLT) is a list of at least one module or row ID
enclosed in parentheses. Lists of module IDs, system row lists and lists of
row [Ds may all occur together in a MROWLT. If the data type designation
following the STANDARD command keyword is ROWS, then a MROWLT must follow.
The MROWLT serves to indicate to the STANDARD procedure which rows of the
database are to be standardized.

CAUTION: All created module IDs appearing in the MROWLT must
have been selected and permanently saved during a
previous execution of the CODAP80 interpreter.
STANDARD cannot process created modules that were
selected in the same run stream.

GROUP COLUMN LIST

A Group Column List (GCOLST) is a list of at least one group or column
ID enclosed in parentheses. Lists of group IDs, system column lists and
lists of column IDs may all occur together in a GCOLST. If the data type
designation following the standard command keyword is COLUMNS, thena GCOLST
must follow. The GCOLST serves to indicate to the STANDARD procedure which
columns of the database are to be standardized.

CAUTION: All created group IDs sppearing in the GCOLST must
have been selected and permanently saved during a
previous execution of the CODAP80 interpreter.
STANDARD csnnot process created groups that were
selected in the same run stream.

FOR

The FOR keyword alerts the STANDARD procedure to expect a following
group or module ID.

150

- [
. . : ’v% R
. b m ey e B e et ol e
. : L s ks)

STANDARD

GROUP 1D

A group ID is an identified aggregate of database columns. A group ID
{ollowing the FOR keyword indicates the columns of the database the rows are
to be standardized across. I[f the preceeding data type designatmn was
. ROWS, than a group ID must follow the FOR keyword.

¢

MODULE ID

A module ID is an identified aggregate of database rows. A module ID
following the FOR keyword indicates the rows of the database the colurmns are
to be standardized across. If the preceeding data type designation was
COLUMNS, then a moduie ID must follow the FOR keyword.

MEAN

The keyword MEAN serves to alert STANDARD that the following user
supplied constant represents the mean to which the rows or columns are to be
standardized.
S1D

The keyword STD serves to alert STANDARD that the following user
supplied constant represents the standard deviation to which the rows or
columns are to be standardized.
ASSIGNMENT OPERATOR

Either the symbols '= or ':='. Either of these symbols may be used to
separate the MEAN or STD keywords from their associated user supplied
constant.

CONSTANT

A user supplied numeric value, such as '3.14'.

ID

Any valid CODAP80 ID, supplied by the user. This new ID will have a
number value, ranging from 1 to the number of rows or columns specified in
the MROWLT or GCOLST, appended to it by the system. If only a single row or
clsglumn is being standardized, then a numeric value is not appended to the

151

2 W(w«'k~-dz 'Alv «-w; iy 4‘

NOSAVE

STANDARD

If the keyword NOSAVE is specified, any new IDs created will not be

saved for future reference.

REMARK

This is a string of up to 240 characters, enclosed in single quotes.

The remark will be associated with the new IDs created.
associated with the new IDs.

PERIOD
A period ('.') must end the STANDARD statement.

152

A remark must be

—— ———— - ™Y

.t . LR .
N b B ivron i on B o o e

STANDARD
STANDARD EXAMPLES

EXAMPLE 1

STANDARD COLUMNS (G6) FOR SVARS]

MEAN:=50 STD:=10 STANI '

* 'INCUMBENT COLUMN STANDARDIZED (M=50 S=10) FOR SVARS'.

The above STANDARD statement syntax is requesting that each of the
columns defined by the system group ID G8 (G6 is a system cluster group ID
defined by the OGROUP routine when the incumbents were clustered at database
creation time), which is, referring to the Sample Database, every incumbent
column, be standardized to a mean of 50 and a standard deviation of 10
across the rows defined by the system module ID SVARS (S1-S85). Seven new
columns will be added to the database (one for each of the seven incumbent
columns) and will be named STANI1-STANI7. The remark INCUMBENT COLUMN
STANDARDIZED (M=50 STD=10) FOR SVARS will be associated with each of the
new columns.

Referring to the Sample Database, the data to be standardized consists

of:
h 12 13 M4 I8 6 17
sl L] . . 2 . 2 .
82 1 1 . 2 1 1 3
S3 1 2 2 1 . 3
S4 2 1 2 2 . . .
S5 . . 1 1 3 . .
After standardization, the new columns consist of:
STANI1 STANI2 STANI3 STANI4 STANIS STANI6 STANI7
S1 . . . 55.00 . $7.07 .
82 44.23 44.23 . $5.00 44.23 42.93 50.00 -
83 44.23 81.55 55.77 . 44.23 - . 50.00
S4 61.5%5 44.25 55.77 §5.00 . . .
S5 . . 38.45 35.00 61.55 . . j
‘i.
4
;L |
%
i
2
153 1

‘ STANDARD

EXAMPLE 2

STANDARD ROWS (H2) FOR INCUMBENTS
MEAN:=50 STD:=10 H2STAN
'ROW H2 STANDARDIZED (M=50 S=10) FOR INCUMBENTS'.

The above STANDARD statement syntax is requesting that the database row
H2 be standardized to s mean of 50 and s standard deviation of 10 across
every incumbent column in the database. The standardized row will be named
H2STAN and will be permanently stored on the database along with its
associsted remark ROW H2 STANDARDIZED (M=50 S=10) FOR INCUMBENTS.

Referring to the Sample Database, the data to be standardized consists
of:

L0133 M 5 8.1
H2 19 23 . 41 27 83 .

After standardization, the new row consists of:

I 2 P L1 5 1 i
H2STAN 40.35 43.19 . $5.96 46.03 67.47 .
154

GROUP

STANDARD

e | (1

6

REMARK

MODULE

ROW
LT

GROUP
COLUMN
war
CONSTANT

E>_

158

> e Bt oxs

c e 3 oiicomboas TG sar g 1 R B . TR e SRR * . IR PTICAL S Bl
R R i ey A L 3w ey g it ot o s
B SRR D . . : s S A

PURPOSE

The VARSUM procedure produces frequency counts and percentages of the

VARSUM

INTRODUCTION

distribution of values for specified rows or columns on the database.

VARSUM procedure is particularly useful when comparing the distribution
of a specified history variable across groups of interest generated from a

‘ cluster operation.

L . FORM

1)
2)
)]

4)

5)

EXAMPLE

1 The general form of the VARSUM command is as follows:

The procedure keyword VARSUM.

The data type designation ROWS or COLUMNS.

A description of the rows or columns upon which
distribution statistics are to be caleulated.

A description of the aggregate of rows or columns (a
group or module ID) across which distribution statistics
are to be calculated.

Options controlling the type of distribution statistic
calculated (frequencies or percentages -~ or both) and the
appearance of the output.

VARSUM ROWS (8S1) FOR (G6) COUNT
HEADING:='SIMPLE EXAMPLE OF THE VARSUM PROCEDURE'".

The above example VARSUM command syntax will answer the question, "What
is the frequency distribution of the values of the secondary variable Sl

across those incumbents identified by the system group G6?"

OUTPUT FROM PROCEDURE

The VARSUM procedure produces a report showing frequency counts or
percentages (or both) of the distribution of values for specified rows or

columns of the database.

156

¢4

RESARE R R R ey S

S e Lt

I)

VARSTUM
VARSUM SYNTAX
Refer to the syntax graph of the VARSUM procedure.

VARSUM
The keyword VARSUM identifies the command.

DATA TYPE DESIGNATION

The keyword ROWS or COLUMNS designates whether it is to be rows or
columns of the database upon which distribution statistics are to be
calculated.)

MODULE ROW LIST

A Module Row List (MROWLT) is a list of at least one module or row ID
enclosed in parentheses. Lists of module IDs, system row lists and lists of
row IDs may all appear together in a MROWLT. In regard to the VARSUM
procedure, the MROWLT identifies the rows of the database upon which
distribution statistics are to be calculated. A MROWLT must be specified if
the data type designation was ROWS,

GROUP COLUMN LIST

A Group Column List (GCOLST) is a list of at least one group or column
ID enclosed in parentheses. Lists of group IDs, system group lists, system
column lists and lists of column IDs may all appear together in a GCOLST.
In regard to the VARSUM procedure, the GCOLST identifies the columns of
the database upon which distribution statistics are to be calculated. A
GCOLST must be specified if the data type designation was COLUMNS.

FOR

The keyword FOR .alerts the procedure that the following list of
database row or column aggregates (that is, a list of module or group IDs)
represent that part of the database acroes which distribution statistics are
to be ted. If the data type designation was ROWS, then a group list
must follow the FOR keyword. If it was COLUMNS, then a module list must
follow the FOR keyword.

157

- - ——— - - >

L [! . e, y
et A gt mpee B e o L A)
i3 - ¥ Lo 2} - - P . - R M . b ‘e . g

BENGN

. ' VARSUM

MODULE LIST

A Module List is a list of at least one module ID enclosed in
parentheses. Each module ID appearing in the module list identifies the
rows of the database across which column distribution statistics are to be
calculated.

GROUP LIST

A Group List is a list of at least one group ID enclosed in
parentheses. Each group [D appearing in the group list identifies the
columne of the database across which row distribution statistics are to be
calculated.

COUNT

Specifying the keyword COUNT signifies that the distribution statis-
tics calculated are to consist of frequency counts.

PERCENT

Specifying the keyword PERCENT signifies that the distribution
statistics calculated are to consist of percentages.

DECODE

At the time the database was initially created (through the use of the
INPSTD database creation routine) the user had the option of associating
descriptive text with the values of a specified row. For example, the user
could have associated the lsbel '™MALE' with a sex value of 'l' and
'FEMALE' with a sex value of '2'. If the user specifies DECODE in the
VARSUM syntax, the procedure will substitute the associated label for the
values of the ID for which distribution statistics are being calculated (see
VARSUM example 2). The number of row or column aggregates across which
distribution statistics were calculated that can be displayed across a page
of output is eight. [If DECODE is specified, only six row or column
aggregates can be displayed across a page.

MISSING
The default condition of the VARSUM procedure is not to accumulate
distribution statistics on missing values. If the MISSING keyword is

specified, distribution statistics including missing values will be
generated.

158

™~

S . b, . ' .
N T, TIC S P ‘vi*":'ﬁ’ﬁ":%"'-f""\i"‘v‘ e, NI EE e T N

VARSUM

STAT

Specification of the keyword STAT indicates that mean and standard
deviation statistics are to be calculated and printed along with the distri-
bution statistics.
HEADING

The keyword HEADING indicates that the following character string?s)

enclosed in single quotes is to serve as a report title,

ASSIGNMENT OPERATOR

Either of the symbols '=' or ':='. Either of these symbols may be used

to separate the HEADING keyword from the charscter strings serving as a
report title.

CHARACTER STRING

Up to 10 lires of 131 characters each may comprise the character
strings serving as a report title. Each string of up to 131 characters
(representing one title line) must be enclosed in single quotes. The
beginning of a new title line is indicated by a blank and another title hne
enclosed in quotes.

For example:

HEADING:='EXAMPLE SHOWING HOW' 'REPORT TITLE LINES'
'ARE CONSTRUCTED FOR THE VARSUM PROCEDURE'. :

This example would produce three title lines centered at the top of
VARSUM's output page:

EXAMPLE SHOWING HOW

REPORT TITLE LINES
ARE CONSTRUCTED FOR THE VARSUM PROCEDURE

PERIOD

A period ('.') must end the syntax of the VARSUM procedure.

159

P,

=

VARSUM .
VARSUM EXAMPLES

EXAMPLE 1

BEGIN SAMPLEDATAS80 EXECUTE. .
"VARSUM ROWS (83,S4) FOR (G6) COUNT '
HEADING:=VARSUM EXAMPLE 1'

'DISTRIBUTION OF S3 & S4 ACROSS ALL INCUMBENTS'.
END.

In the above example, the user is requesting that frequency counts be
calculated on the distribution of values occurring for the rows S3 and S4
across all columns indicated by the system group G6 (G6 is a system group
generated by clustering at database creation time. G86 contains 7 members: i
11‘17)0 . . - ’

EXAMPLE 1
PRINTED OUTPUT

PAGE -1
STUDY ID - SAMPLEDATAS80
VARSUM EXAMPLE 1
DISTRIBUTION OF S3 & S4 ACROSS ALL INCUMBENTS

#s+% FREQUENCY e+

s -3 SECONDARY -~ SHAKE DOWN VISITORS
INTERVAL G-6
1.00 2
2.00 2
3.00 1
TOTAL COUNTED ABOVE 5 |
MISSING 2 |
S -4 SECONDARY - ESCORT INMATES
INTERVAL G-6
1.00 1
2,00 3
TOTAL COUNTED ABOVE 4 ‘,
MISSING 3
D
-
160 {
‘!
- - e P ————— i f

- ' ' . . ;-' st B tow, - :) X . V O
s v g '554‘::'.‘?‘;?!’3?:.%5" ,%ﬂ‘ﬂf*,«*@‘ahw st o) I e :wﬂf’{ﬁ“ﬂ! e

(' EXAMPLE 2

BEGIN SAMPLEDATAS80 EXECUTE.
SELECT ROWS NEWMOD (S3, S4)
'MODULE CONTAINING ROWS S3 & 54'.
VARSUM ROWS (NEWMOD) FOR (G5,G6)
COUNT PERCENT DECODE MISSING
HEADING:='VARSUM EXAMPLE 2'
'DISTRIBUTION OF EACH ROW CONTAINED IN MODULE NEWMOD'
'ACROSS COLUMNS IDENTIFIED BY SYSTEM GROUP GS5'
'AND THEN ACROS8S THOSE COLUMNS IN SYSTEM GROUP G6'.

END.

In the above example, the user is first selecting the rows S3 and S4 to
be in the created module NEWMOD (see the section on the SELECT procedure for
more information). Following that, the user is requesting that the VARSUM
procedure calculate both frequency and percentage statistics for each row
identified by the module ID NEWMOD (rows S3 and S4). The statistics are to
be calculated first across the columns identified by the system cluster
group G5, and then across the columns identified by the system cluster group
G6 (G5 and G6 are system groups generated by clustering at database creation
time. Referring to the Sample Database, G5 contains 4 members: columns
14-17; G6 contains 7 members: columns [1-17). Decode has been specified
and missing values are to be included in the calculation of distribution

statistics.

{ ;
. 3

;

3

i

|

i

i
) 161 1

A SR st~
! —_—

INATE

L} 3 . ,\-
. Y ai . - el

bl

.
VR SpIC SOPVIENERINTY

VARSUM
EXAMPLE 2 -
PRINTED OUTPUT ¥ I
PAGE - 1 4
§
STUDYID - SAMPLEDATAS0 :
VARSUM EXAMPLE 2
DISTRIBUTION OF EACH ROW CONTAINED IN MODULE NEWMOD
ACROSS COLUMNS IDENTIFIED BY SYSTEM GROUP G5 ;
AND THEN ACROSS THOSE COLUMNS IN SYSTEM GROUP G6 §
S98es FREQUENCY E 2 b1 g
B
s
s-3 SECONDARY - SHAKE DOWN VISITORS
INTERVAL G-5 G -8
) 2 2
1.00 DO 1 2
2.00 ASSIST 0 2
3,00 SUPERVISE 1 1
TOTAL COUNTED ABOVE 4 7
s8¢ PERCENTAGE %%%+
sS-3 SECONDARY - SHAKE DOWN VISITORS 3
INTERVAL G-5 G-6§ -
. 50.00 28.57
1.00 DO 25.00 28.57
2.00 ASSIST 0.00 28.57
3.00 SUPERVISE 25.00 14.29
TOTAL PERCENT 100.00 100.00
;
\) ;

i
|
162 {
!
|

VARSUM

{ EXAMPLE 2
‘ PRINTED OUTPUT (continued)

PAGE - 2

STUDYID - SAMPLEDATAS0
VARSUM EXAMPLE 2
DISTRIBUTION OF EACH ROW CONTAINED IN MODULE NEWMOD
ACROSS COLUMNS IDENTIFIED BY SYSTEM GROUP G5
AND THEN ACROSS THOSE COLUMNS IN SYSTEM GROUP G6

Shhs FREQUENCY SRS

S -4 SECONDARY - ESCORT INMATES
. INTERVAL - G-5 ‘G -8
. 3 3
1.00 DO 0 1
2,00 ASSIST 1 3
| TOTAL COUNTED ABOVE 4 7
ssss PERCENTAGE *#ss
S -4 SECONDARY - ESCORT INMATES
{ INTERVAL G-5 . G-6
. 75.00 42.86
1.00 DO 0.00 14.29
2.00 ASSIST 25,00 L ___42.86

TOTAL PERCENT 100.00 100.00

. t
183 '

!

H

e e ——— &

NN
~

9. - TR S AR A g N T gy Oy
t;‘ufﬂ; L '

VARSUM

EXAMPLE 3

BEGIN SAMPLEDATA80 EXECUTE.
VARSUM COLUMNS (Gl1) FOR (SVARS) COUNT
HEADING:='VARSUM EXAMPLE 3'
'‘DISTRIBUTION OF EACH COLUMN CONTAINED [N'
'SYSTEM GROUP GI1' ; ’

'ACROSS ROWS IDENTIFIED BY SYSTEM MODULE SVARS'.
END.

The above example demonstrates the VARSUM procedure's symmetric
capability. The two previous examples of the VARSUM procedure were
calculating distribution statistics on rows across columns. Example 3 is
requesting that distribution statistics be calculated on database columns

. extending across rows. Specifically, the user is requesting that frequency

counts of the distribution of values for each of the columns contained in

system group Gl (columns 12 and I3) be calculated across the rows identified
by the system module SVARS (rows S1-8S5).)

EXAMPLE 3
PRINTED OUTPUT -

PAGE -1

STUDY ID - SAMPLEDATAS0
VARSUM EXAMPLE 3
DISTRIBUTION OF EACH COLUMN CONTAINED IN
SYSTEM GROUP Gl
ACROSS ROWS IDENTIFIED BY SYSTEM MODULE SVARS

shny FREQUENCY PR 2 L

I-2

INTERVAL SVARS
1.0 2
2.0 1

TOTAL COUNTED ABOVE 3

MISSING 2

[-3

INTERVAL SVARS
1.0 1
2.0 2

TOTAL COUNTED ABOVE 3

MISSING 2

164

S

=

e

—— Y
g " ; [

| e ot . . : B ‘.‘.' -) ' .
I . %,_;;,g. - Wg”,(p&,‘: \,,(z.,)-m»&“%‘ffﬂ‘;w?}"ﬁ%w“f{ﬁ .4«‘@;’.%‘}“4?-" :

VARSUM

EXAMPLE 4

BEGIN SAMPLEDATAS80 EXECUTE.
DESCRIBE ROWS TASKS FOR (G6)
G6PCNT :=PCNT
'PERCENT PERFORMING TASKS -- G6'.
CREATE COLUMN FOR TASKS !
IF G6PCNT .LE. 80 THEN NEWCOLUMN:=1.0
ELSE NEWCOLUMN:=2.0
'‘G6PCNT <= 60, NEWCOLUMN=1 -- ELSE NEWCOLUMN=2',
VARSUM COLUMNS (NEWCOLUMN) FOR (TASKS) COUNT
HEADING:=VARSUM EXAMPLE 4'
'DISTRIBUTION OF THE COLUMN NEWCOLUMN!'
'AS MEASURED ACROSS THE SYSTEM MODULE TASKS'.

END.

The above example is demonstrating how cther procedures in CODAP80 may
be used to add rows or columns of summary calculations to the database, and
then have the VARSUM procedure produce a report of the distribution of those
rows or columns. !

Initially, the user is requesting that the DESCRIBE procedure generate
a column consisting of the percent of all incumbents performing each task
row. The column generated by DESCRIBE (and named G6PCNT) will be 5 elements
long (one element per task) and will consist of the values:

71.43 85.71 71.43 57.14 ‘42.88

Following that, the user is requesting that the CREATE -procedure
generate another column (named NEWCOLUMN), the values of which to be a
function of the magnitude of the values in column G6PCNT (NEWCOLUMN will
equal 1.00 when G6PCNT is less than or equal to 60, otherwise NEWCOLUMN
will equal 2.00). The column NEWCOLUMN will be 5 elements long (one for
each task row) and will consist of the.values:

2.00 2.00 2.00 1.00 1.00
Last, the user is requesting that the VARSUM procedure calculate

frequency counts of the distribution of values in column NEWCOLUMN as
measured across the rows identified by the system module TASKS (T1-T5).

" 188

| e e —— e,

i 3

T . L L - M " B
o e s et S ¢ L, , . - .. N
et “"*wwqwn’wwvmehm&:m e et e i e
S T R i o B S T B

VARSUM

EXAMPLE 4 ,
PRINTED OUTPUT
PAGE - 1
STUDY ID - SAMPLEDATA80
VARSUM EXAMPLE 4
DISTRIBUTION OF THE COLUMN NEWCOLUMN
AS MEASURED ACROSS THE SYSTEM MODULE TASKS
ssss PREQUENCY #**»
NEWCOLUMN G6PCNT <= 60, NEWCOLUMN=1 -~ ELSE NEWCOLUMN=2
INTERVAL _ TASKS
1.0 2
2.0 3
TOTAL COUNTED ABOVE 5
MISSING 0
i
o
166

- rem— - -

- e " -
it . © o e . o
it ﬁ:fm-’,'y_‘;‘i« s ,‘.-‘_«;.M\' ooy - SE it e 1y ol s
RE Ak E P v B ’ R

e © ALeraTy.,

Y

VARSUM

o ——— it e i = aheta

ONIuLS
HYILOVUYHI

YO1vY340
oNIgY AViS oNIgSIN 300930
ANINNDISSY lm u..% g

81
N OO

mm
Mou

167

EI

i
~)
.
.
|
-
.
-
t
.
. . ,
.
!
$

REFERENCES

‘ a
Voo

' | 168 : |

T

. REFERENCES

Brown, Gary D. System 370 Job Control Language. New York: John Wiley &
Song, 1977. — .

Ward, J.H., Jr. Hierarchical érouping to optimize an objective funotion.
American Statistical Association Journal, 1963, 58, 236-244. b

Winer, B.J. Statistical Principles Q_ Experimental Design. New York:
McGraw-iil, 1971.

ao—.

169

T TR

w
\\
P
|
}
t
~ ’ -
1
!
\
:‘)
Y
R
',t :
-
pi.‘ B
3
]

T T

‘ APPENDIX A
SAMPLE CODAP80 PROGRAM

ke -

i

SENRRE, ey

>

A-L

—poo

s T b : ™
: S T Y T L
S s S el ne o o s sl o i

o)
m
(=]

L R B R B B & K & X K % X & _ K & & % 3

WU T W R I I I I I I W

THIS IS AN EXAMPLE OF A COMPLETE PROGRAM RUN STREAM
IN THE CODAP80 LANGUAGE. A PROGRAM SUCH AS THIS
WOULD BE SUBMITTED TO THE COMPUTER BY THE USER. A
GOOD PRACTICE TO FOLLOW WHEN WRITING CODAP80 SOURCE
PROGRAMS IS TO DOCUMENT WHAT THE PROGRAM IS DOING
THROUGH THE LIBERAL USE OF COMMENTS. ANY CHARACTER
STRING OCCURRING BETWEEN TWO POUND SIGNS IS
INTERPRETED BY THE CODAP80 SYSTEM AS A COMMENT.
COMMENTS ARE NOT EXECUTED, BUT ARE PRINTED OUT
ALONG WITH THE PROGRAM STATEMENTS. FUTURE USERS
WILL THEN BE ABLE TO LOOK AT THE PROGRAM AND TELL
WHAT IT WAS DOING.

THE BEGIN STATEMENT IS THE FIRST EXECUTABLE
STATEMENT IN THE CODAP80 LANGUAGE. THIS STATEMENT
ALERTS THE SYSTEM THAT A CODAP80 SOURCE LANGUAGE
PROGRAM FOLLOWS. SAMPLEDATAS80 IS THE STUDY ID
ASSOCIATED WITH THE DATABASE BEING ACCESSED. THE
STUDY ID GIVEN IN THIS STATEMENT WILL BE CHECKED
AGAINST THE ONE STORED ON THE DATABASE (WHICH WAS
ASSIGNED AT INPUT STANDARD TIME) AND, IF THEY
MATCH, PROCESSING WILL CONTINUE. THE KEYWORD
EXECUTE INSTRUCTS THE SYSTEM THAT IF NO - ERRORS

‘ARE FOUND THE FOLLOWING STATEMENTS ARE TO BE

EXECUTED. HAD "EXECUTE" BEEN OMITTED, ONLY SYNTAX
ANALYSIS WOULD HAVE BEEN PERFORMED.

o]
z

SAMPLEDATAS80 EXECUTE.

ONE OF THE FIRST OPERATIONS IN A STUDY IS TO DEFINE
THE DATABASE SUBSETS OF INTEREST. THE FOLLOWING
FIVE SELECT STATEMENTS ARE ASSIGNING TASKS (ROWS)
TO MODULES (DUTYA DUTYB) AND INCUMBENTS (COLUMNS)
TO GROUPS (MALES, FEMALES AND OLDERNOTING2). THE
EFFECT OF THE FIFTH SELECT STATEMENT:

COLUMNS OLDERNOTING2 (H2.GT.30 & NOT IN G2)
'INCUMBENTS OLDER THAN 30 AND NOT IN CLUSTER G2'

IS TO ASSIGN ONE INCUMBENT (18) TO GROUP ID
OLDERNOTING2. THIS INCUMBENT (I8) IS THE ONLY ONE
IN THE SAMPLE DATABASE THAT MEETS THE CONDITION OF
BEING OLDER THAN 30 (HISTORY VARIABLE 2 IS AGE--SEE
SAMPLE DATABASE) WHILE AT THE SAME TIME NOT
BELONGING TO CLUSTER G2. THE REMARK 'INCUMBENTS
OLDER THAN 30 AND NOT IN CLUSTER G2' WILL BE STORED
ON THE DATABASE ALONG WITH ITS ASSOCIATED GROUP ID
(OLDERNOTING2) FOR LATER REFERENCE.

»—
ISR - —— L

e sl

L SR R

NOTICE THAT IT WAS NOT NECESSARY TO REPEAT THE
SELECT PROCEDURE KEYWORD BECAUSE THE FIVE COMMANDS
OCCUR TOGETHER AND, EXCEPT FOR THE LAST IN THE
SERIES, ARE TERMINATED BY A SEMICOLON (;). ID'S
MAY BE UP TO 12 CHARACTERS LONG.

SELECT ROWS DUTYA (T1-T3) 'SHAKE DOWN TASKS';

LA K & X B & K & & X X B 5 % & B K E KX X X R E-F X K KX E X R % ¥ 3

ROWS DUTYB (T4-TS) 'OTHER TASKS';
COLUMNS MALES (H1=1) 'INCUMBENTS OF THE MALE SEX';
COLUMNS FEMALES (H1=2)
'INCUMBENTS OF THE FEMALE SEX";
COLUMNS OLDERNOTING2 (H2.GT.30 & NOT IN G2)
'INCUMBENTS OLDER THAN 30 AND NOT IN CLUSTER G2'.

NOW THAT THOSE AREAS OF INTEREST IN THE DATABASE

HAVE BEEN IDENTIFIED AND LABELED, IT.IS POSSIBLE TO

DIRECT PROCESSING AT THOSE AREAS.

THE FOLLOWING DESCRIBE COMMANDS WILL GENERATE A
TOTAL OF FIVE NEW COLUMNS TO BE STORED ON THE
DATABASE. THE FIRST DESCRIBE STATEMENT (T IS
REALLY THREE DESCRIBE STATEMENTS, BUT SINCE THE
SAME AREA OF THE DATABASE IS BEING ACCESSED CODING
CAN BE REDUCED THROUGH THE USE OF THE TERMINATING
SEMICOLON) IS GENERATING THREE COLUMNS: PERCENT
PERFORMING PER TASK, AVERAGE PER TASK FOR THOSE
PERFORMING AND AVERAGE PER TASK FOR THOSE
PERFORMING OR NOT. THE THREE COLUMNS ARE
RESPECTIVELY BEING ASSIGNED THE ID'S GS5PCNT, G5AVGP
AND GSAVGA. THE CALCULATIONS WILL BE PERFORMED
ACROSS THE COLUMNS ASSOCIATED WITH THE CLUSTER G5
(14-17). EACH OF THESE THREE COLUMNS WILL CONTAIN
S VALUES (ONE FOR EACH TASK ON THE SAMPLE
DATABASE--TASKS, USED IN THE STATEMENT, IS A
CODAP80 SYSTEM MODULE ASSOCIATED WITH ALL THE TASKS
IN THE STUDY).

THE LAST TWO DESCRIBE STATEMENTS ARE CALCULATING
PERCENT PERFORMING TASKS ACROSS THOSE COLUMNS
ASSOCIATED WITH THE CREATED GROUP ID'S MALES (I2,
14-17) AND FEMALES (11, I3). THE TWO GENERATED
COLUMNS ARE ASSIGNED THE ID'S MALESPCNT AND
FEMALESPCNT.

ALL FIVE GENERATED COLUMNS WILL BE SAVED ON THE
PERMANENT DATABASE ALONG WITH THEIR ASSOCIATED
REMARKS (HAD THE NOSAVE KEYWORD APPEARED, THE
ASSOCIATED COLUMNS WOULD ONLY BE KEPT FOR THE
DURATION OF THIS RUN). ~

A-3
174

Ik W IR

sty e

o . L . :
e e e P AT AP 0 e e *%l}w;ﬁ"':r-q B R I LT TR

Y

L R K R K R S S S 3

THE FOLLOWING DESCRIBE COMMANDS ARE PERFORMING
THEIR CALCULATIONS ON TASKS (ROWS) ACROSS
INCUMBENTS (COLUMNS). THERE ARE NO RESTRICTIONS ON
WHICH ROWS OF THE DATABASE THE DESCRIBE COMMAND MAY
PROCESS. THESE VERY SAME CALCULATIONS COULD JUST
AS WELL HAE BEEN AIMED AT HISTORY INFORMATION, OR
ANY OPHER AGGREGATE OF ROWS SELECTEDAND LABELED BY
THE SELECT PROCEDURE. DESCRIBE MAY ALSO PROCESS
COLUMNS ACROSS ROWS. THIS FEATURE GIVES IT THE
CAPABILITY OF SYMMETRY.

DESCRIBE ROWS TASKS FOR (G5)
GSPCNT := PCNT 'PERCENT PERFORMING TASKS--G5';
GS5AVGP := AVGP

'AVERAGE PERCENT TIME SPENT (PERFORMING)--G5';

GS5AVGA := AVGA 'AVERAGE PERCENT TIME SPENT (ALL)--G5'.
DESCRIBE ROWS TASKS FOR (MALES)

MALESPCNT := PCNT 'PERCENT PERFORMING TASKS--MALES'.
DESCRIBE ROWS TASKS FOR (FEMALES)

FEMALESPCNT := PCNT

L S K B R R R R R 2

'PERCENT PERFORMING TASKS--FEMALES'.

A VALUABLE STATISTIC IN JOB ANALYSIS IS THE
DIFFERENCE IN PERCENT PERFORMING ON TASKS BETWEEN
INCUMBENT AGGREGATES OF INTEREST. TO CALCULATE
SUCH A DIFFERENCE STATISTIC, THE USER WOULD EXECUTE

THE CREATE PROCEDURE. IN THE ABOVE DESCRIBE.

EXAMPLES, TWO PERCENT PERFORMING COLUMNS WERE
GENERATED~--MALESPCNT & FEMALESPCNT. TO CALCULATE
THE DIFFERENCE BETWEEN THOSE TWO COLUMNS, BUT ONLY
FOR TASKS 1-3, YOU WOULD EXECUTE THE FOLLOWING
CREATE COMMAND.

CREATE COLUMN DUTYA DIFFSEX := MALESPCNT-FEMALESPCNT
'‘DIFFERENCE IN PERCENT PERFORMING BETWEEN SEXES'.

BB EREEESEEES

THE ABOVE CREATE COMMAND HAS 'CREATED' A NEW
COLUMN. THE NEW COLUMN HAS BEEN GIVEN THE ID
DIFFSEX AND IT, ALONG WITH ITS ASSOCIATED REMARK,
HAS BEEN SAVED ON THE PERMANENT DATABASE. DIFFSEX
WILL HAVE THREE VALUES IN IT, ONE FOR EVERY TASK
ASSOCIATED WITH THE MODULE ID DUTYA (DUTYA WAS
FORMED BY AN EARLIER SELECT COMMAND, AND WAS
ASSIGNED TASKS 1-3).

THE ABOVE EXAMPLE OF THE CREATE PROCEDURE IS ONE OF
THE SIMPLEST. CREATE IS A VERY POWERFUL PROCEDURE,
AND ALSO HAS SYMMETRIC CAPABILITY.

A-4

173

I W I IE I I NI

E R K R R R R R R

E 2 K JE S JE R R Y

e A e AN A e
- Y £ o ROV

w—7

AT THIS POINT, THE JOB ANALYST MAY WISH TO SEE SOME
OF THE DATA THAT HAS BEEN GENERATED. AT PRESENT,
THE GENERATED DATA IS RESIDING ON THE DATABASE.
MANY MORE CALCULATIONS COULD BE PERFORMED ON THE
DATABASE, AND MANY MORE PROCEDURES COULD BE
EXECUTED. . - ’

TO PRODUCE REPORTS OF DATA RESIDING ON THE
DATABASE, THE PRINT PROCEDURE IS EXECUTED.

THE FIRST PRINT COMMAND WILL PRODUCE A REPORT
SIMILAR TO THAT PRODUCED BY THE PRTVAR PROGRAM IN
THE IBM EXPORT VERSION OF CODAP.

WD ENEENN

PRINT COLUMNS (G8) NOREMARKS / ROWS (HVARS)
HEADING := 'EXAMPLE 1 OF PRINT'
'A PRTVAR-LIKE REPORT'.

EXAMPLE 1 OF PRINT WILL PRODUCE A REPORT WITH
INCUMBENTS DOWN THE VERTICAL AXIS AND ALL HISTORY
INFORMATION ACROSS THE HORIZONTAL AXIS.

THE NEXT EXAMPLE OF PRINT WILL PRODUCE A REPORT
SIMILAR TO THAT OF THE JOBDEC PROGRAM IN THE IBM
VERSION OF CODAP. THE REPORT WILL BE IN TASK
INVENTORY ORDER.

LR B K X B R R % R 4

! PRINT. ROWS (TASKS) / COLUMNS (G5PCNT G5AVGP G5AVGA)
- CUM (GSAVGA)
HEADING := 'EXAMPLE 2 OF PRINT'
'‘REPORT SIMILAR TO THAT OF IBM CODAP JOBDEC'
‘AN ACCUMULATION OF GSAVGA HAS BEEN REQUESTED'
'OUTPUT IS IN TASK INVENTORY ORDER'.

THE THIRD EXAMPLE OF PRINT WILL PRODUCE A REPORT
SIMILAR TO THAT GENERATED ABOVE, EXCEPT THAT IT
WILL BE BROKEN-DOWN INTO MODULES (DUTYA & DUTYB).
THE TASKS WITHIN THE MODULES WILL BE SORTED IN
DESCENDING GS5AVGA ORDER.

L B R JE B R J

PRINT ROWS (DUTYA DUTYB) / COLUMNS (GSPCN1 G5AVGP
GSAVGA) SORT DESCENDING BY (GS5AVGA)
HEADING := 'EXAMLPLE 3 OF PRINT'
'REPORT IS BROKEN-DOWN INTO MODULES'
'TASKS WITHIN MODULES IN DESCENDING G5AVGA ORDER'.

THE LAST (FOURTH; PRINT EXAMPLE WILL PRODUCE A
GROUP DIFFERENCE DESCRIPTION IN TASK INVENTORY
ORDER. ‘) ’)

TN

e a0t e g e a0 e =i it ima e e o o e e e e—— b i

B E I I W I W E X K R b b S R b S SR Y

I W Ik W XA

LB O K 3

b
4
11

/
— m—— ‘ — ,
R C ek e “"':‘.'*"‘,"-,-“"?‘"-"""-" L JYT “'“"‘:":'":1"‘" Y .3.” ’ N RN - ppee e T

PRINT ROWS (TASKS) / COLUMNS (MALESPCNT FEMALESPCNT
DIFFSEX)
HEADING := 'EXAMPLE 4 OF PRINT"
'‘GROUP DIFFERENCE DESCRIPTION
'REPORT IS IN TASK INVENTORY ORDER'.

a4

” ” :
THE FOURTH PRINT EXAMPLE WILL GIVE AN IDEA OF HOW
MISSING VALUES ARE HANDLED IN THE CODAP80 SYSTEM.
THIS PRINT IS REQUESTING THAT ALL THE TASK VALUES
OF MALESPCNT, FEMALESPCNT AND DIFFSEX BE PRINTED

(TASKS DOWN THE VERTICAL AXIS--THE THREE COLUMNS # 1
’ # ACROSS THE HORIZONTAL AXIS). THERE IS A VALUE OF #
MALESPCNT AND FEMALESPCNT FOREVERY TASK VALUE, BUT
DIFFSEX WILL ONLY HAVE VALUES FOR TASKS 1-3
(DIFFSEX WAS 'CREATED' BY THE CREATE PROCEDURE--BUT
‘# ONLY.FOR THOSE TASKS ASSOCIATED WITH THE MODULE ID #
DUTYA).
#
#
! # THE END STATEMENT MUST TERMINATE ALL CODAP80 SOURCE #
LANGUAGE PROGRAMS.
#

END.
K
N
v .) t
15 e
. e . S [
. ";

Pl “r

. S A...'r" S L hg) o
R N o h i %*“?.*‘Js?fﬂ‘ret@s*wx-%‘f""”‘zw ikt

7 '

STUDY ID - SAMPLEDATAS0
EXAMPLE 1 OF PRINT
A PRTVAR-LIKE REPORT
H-1 SEX
H -2 AGE
H -3 YEARS ON JOB
H -4 INCUMBENT ID
H-1 H-2 H-3 H-14
G-~-6
I-1 2.00 19.00 1.00 1.00
1-2 1.00 23.00 2.00 5.00
[-3 2.00 . 11.00 7.00
[-4 1.00 41.00 19.00 2.00
I -5 1.00 27.00 3.00 4.00
I1-6 1.00 53.00 30.00 6.00
-7 1.00 . 16.00 3.00

/7¢

PAGE - 1

P N .,
st e ﬁwzfpn,-;gﬁ,gwmﬁ{rm i b o
- — - Ry A e W

"l;
.:,

;
i
.
]
|

. absae

P

PAGE -1 ’
STUDY 1D - SAMPLEDATAS80 -
EXAMPLE 2 OF PRINT
REPORT SIMILAR TO THAT OF IBM CODAP JOBDEC
AN ACCUMULATION OF GSAVGA HAS BEEN REQUESTED
OUTPUT IS IN TASK INVENTORY ORDER

-y) e
e -,,:,.Q.N;%xw}:;wﬂﬁmw

PRI

GSPCNT PERCENT PERFORMING TASKS--GS5

GSAVGP AVERAGE PERCENT TIME SPENT (PERFORMING)--GS
GS5AVGA AVERAGE PERCENT TIME SPENT (ALL)--G5
G5AVGA AVERAGE PERCENT TIME SPENT (ALL)-—GS5

ACCUMULATE ;
GSPCNT GSAVGP GSAVGA G5AVGA e
‘ TASKS
i T -1 SUBDUE VIOLENT INMATES 75.00 23.67 17.75 17.75 -
| T - 2 SHAKE DOWN INMATES 100.00 43.75 43.75 61.50
‘ T - 3 SHAKE DOWN VISITORS 50.00 37.50 18.75 80.25
| T - 4 ESCORT INMATES 25.00 22.00 5.50 85.75
T -5 TESTIFY IN COURT 50.00 28.50 14.25 100.00

STUDY ID - SAMPLEDATAS0
EXAMPLE 3 OF PRINT

REPORT IS BROKEN-DOWN INTO MODULES

PAGE - 1

TASKS WITHIN MODULES IN DESCENDING G5AVGA ORDER

GSPCNT PERCENT PERFORMING TASKS-~G5

GSAVGP AVERAGE PERCENT TIME SPENT (PERFORMING)--G5

G5AVGA AVERAGE PERCENT TIME SPENT (ALL)--GS

G5PCNT G5AVGP G5AVGA
DUTYA SHAKE DOWN TASKS
T - 2 SHAKE DOWN INMATES 100.00 43.75 43.75
T -3 SHAKE DOWN VISITORS 50.00 37.50 18.75
T -1 SUBDUE VIOLENT INMATES 75.00 23.67 17.75
{‘ PAGE - ¢
STUDY ID - SAMPLEDATAS0

EXAMPLE 3 OF PRINT

REPORT IS BROKEN-DOWN INTO MODULES

TASKS WITHIN MODULES IN DESCENDING G5AVGA ORDER

GSPCNT PERCENT PERFORMING TASKS--G5

GSAVGP AVERAGE PERCENT TIME SPENT (PERFORMING)--G5

GS5AVGA AVERAGE PERCENT TIME SPENT (ALL)-~G5
GSPCNT G5AVGP

GSAVGA

DUTYB OTHER TASKS

T-5 TESTIFY IN COURT 50.00 28.50
T -4 ESCORT INMATES 25.00 22.00

14.25
5.50

A st -

(SR]

T

-

, PAGE - 1

, ! STUDY ID -~ SAMPLEDATAS0 t
EXAMPLE 4 OF PRINT

I GROUP DIFFERENCE DESCRIPTION

| REPORT IS IN TASK INVENTORY ORDER

; . MALESPCNT PERCENT PERFORMING TASKS-~MALES
‘ FEMALESPCNT PERCENT PERFORMING TASKS-—-FEMALES
DIFFSEX DIFFERENCE IN PERCENT PERFORMING BETWEEN SEXES

MALESPCNT FEMALESPCNT DIFFSEX

‘ TASKS
T-- 1 SUBDUE VIOLENT INMATES . 80.00 : 50.00 - " 30.00
T -2 SHAKE DOWN INMATES 100.00 50.00 50.00
i T -3 SHAKE DOWN VISITORS 60.00 100.00 - 40.00
T -4 ESCORT INMATES 40.00 100.00 .
T -5 TESTIFY IN COURT 40.00 50.00 .

Tl e NS g e ""‘r'“ﬁ!kt%‘
e

8

P S S

b e e SRS Y

P

APPENDIX B

OVERLAP SIMILARITY FORMULAE

s
e et e

OVERLAP SIMILARITY FORMULAE

EUCLIDEAN DISTANCE

: =n . 1/2
DISTANCE= .5 (X;- ¥)27
i=1

SQUARED EUCLIDEAN DISTANCE

i=n
DSQUARE = 1 (X - Y)2

ABSOLUTE OVERLAP

i=n
OVL = ¢ Minimum (X, Y;)

i=1
BINARY
. # Nonzero Elements in
- Common Between X and Y
BINARY = —Nonzero # Nonzero _ # Nonzero Elements in
X Elements Y Elements Common Between X and Y

FORMULAE SYMBOL NOTATION

The symbols X and Y represent the data vectors between which similarity
is being calculated. X; and Y; represent the ith elements of data vectors X
and Y, respectively. The symbol n represents the number of elements in data
vectors X or Y.

ase

NS

o ———

i
‘ APPENDIX C
. FORTRAN FG PROC
{ COMPILE, LINK EDIT AND GO PROCEDURE
. FOR THE Gl PORTRAN COMPILER
o
i
i
|
v :

!

e Y S NG

oo S 0 0 e

FORTRAN FG PROC .
COMPILE, LINK EDIT AND GO PROCEDURE
FOR THE Gl FORTRAN COMPILER

//FG EXEC PGM=]EYFORT,REGION= 192K

//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD SYSQUT=8

//SYSLIN DO DSNAME=& LOADSET,D|SP=(MOD,PASS) ,UNITSYSSQ,
;‘ SPACE=(80, (200, 100) ,RLSE) ,0CB=BLKS1ZE=80

//\KED EXEC PGMsiEWL,REGION= 128K, PARMs (XREF,LET,LIST)
i //SYSLiB DO DSNME-SYSI FORTLIB, DlSP-SI'R
//SYSLMOD DD DSNAMEsSGOSET(MAIN) .DISP-(NEH,PASS) sUNIT=SYSDA,
// SPACE= (1024, (20,10, 1) ,RLSE) ,DCB=BLKS |ZE=1024
//SYSPRINT DD SYSOUTsA
//SYSUTY DD DSNAMEs&SYSUT),UNIT=SYSDA, SPACE=(1024, (20,10) ,RLSE) ,
‘ ‘ /7 WBOBLKSlZE'lozl

//SYSLIN DD DSNME-&LOADSET.DlSP-(OLD,DELETE)
;‘ DD DONAME=SYSIN

//G0 EXEC PGM=®,LKED, SYSLMOD
. //FTO5F001 DO DONAME=SYSIN
| //FTOSFO01 DO SYSOUT=A
//FTOTFO01 DO SYSOUTeB

P ST

'

C-2

(43 | N %T

e s — e =

- ——— " T . 4 L v (N

.. . .
O et o O

S i Y s T D Sy gy

S r 4 s e i T aeaaen,

B
|
‘ :
]
{)
. 4
1
, |
; ;
‘ APPENDIX D
’ NEW CODAPS0 FEATURES
{
1
4
]

NEW CODAP80 FEATURES B

The 83.1 release of CODAP80 includes many new features. Below is a
list of changes and additions, including new system features, a new proce-
dure and enhancements to existing programs or procedures. -

System Features

_ Core memory requirements for the CODAP80 interpreter have been reduced
to allow its execution in under 82¢K.

' Mass storage requirements for the DECODE file have been reduced by
‘ 90%. _

A thru operator may now be used to connect created IDs (e.g.,
CREATEDID1-CREATEDIDI15). .

, The assignment operators ":=" and "=" may now be used inter-
‘ changably.

New Procedure

A new procedure (named RELY) has been added to the CODAP80 inter- ¢
preter. The procedure calculates inter and intra rater reliabilities on :
rows or columns of the database.

Database Creation Enhancements

The INPSTD program of the database creation phase of the CODAPS80
system allows new . ays the input data may be handled. The user has the
option of not relativizing task information to a percentage scale. The user
also has the option of allowing INPSTD to zero-fill any data that is not
right justified. Real numbers may now be read with the format fields
specification cards.

The OGROUP program of the database creation phase of the CODAPS8(
gystem now allows the user to print the overlap matrix produced during
incumbent clustering.

Enhancements to Existing Procedures

PRINT - the PRINT .procedure is significantly more efficient, and now
provides users with format control over the values that are printed. Two)
new keywords (NOSKIP and NORESET) have been added to make more efficient) '
use of paper and control how values are accumulated.

; VARSUM - if the user specifies both the COUNT and PERCENT keywords of)
this procedure, execution time is reduced by approximately 50% of that found
with using a similar command in the 82.1 release of CODAP80. Column

. . e =

' |
D-2 f
1)s '

e . o S Al T, B
4 . ~ Lo L . .
SRsh, on }ls&'{emg;e‘;-%m@&“p —t,

. headings are now automatically printed at the top of a new page when an
interval needs to be continued. A new keyword (STAT) has been added to

provide mean and standard deviation calculations on distribution
statistics.

o

A e s

iy
v

D-3

> ——gp—

- S N T
ST e R e ey egtesBie e viagieg el o

